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ABSTRACT

A stochastic Green function representing the radiation field from a point
source above a two-dimensional homogeneous random surface is constructed by
integrating the random wave field for a plane wave incidence. Statistical
properties and radiation patterns of the coherent and incoherent fields are
evaluated using the asymptotic expression of the Green function.

INTRODUCTION

It is shown in the preceeding worksl'3)that the wave field scattered by a
random surface can be better treated as a stochastic functional of the
homogeneous random surface without any difficulties such as encountered in
the perturbation and renormalization theories. In a previous report4 a two-
dimensional (2D) Green function for a point source above a 1D random surface
was construceted from the random wave field for a plane wave incidence, and
from its stochastic asymptotic expression various characteristics of the
coherent and incoherent field were derived concerning the radiation and
propagation over a random surface. The present paper aims to develop a
similar treatment for the 3D Green function representing the radiation field
from a point source placed above a 2D random surface so as to obtain the
statistical characteristics of the radiation over the random surface.

PLANE WAVE SCATTERING BY TWO-DIMENSIONAL RANDOM SURFACE

Let the point r in 3D space Ry be represented either by the spherical or
cylindrical coordinates: r = (r,08,¢) = (p,z) and p = (p, ¢), wherep =

lo| = r sin®, z=r cos ®, p being the radial vector in Ry. Let the 2D
random surface be given by a homogeneous Gaussian random field:
2= f(p) = | ePFE(R)B(A), b eRy (1)

where dB(A) denotes the 2D complex Gaussian random measure: <dB(A)*dB{(A')> =
8, ,'dr, < > denoting average and * complex conjugate.lF(p)I2 gives the
spectral density and its integration over A ¢ Ry gives the variance ol of
the random surface. The random wave field ¢ satisfies the wave equation and
either Dirichlet or Neumann condition on the random surface, which can be
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approximated by the following eguivalent boundary condition at z = 0:

! - -
L+ f%%} J;20 =0 (Dirichlet) (2)
2 t
(v f + o 152 =
[-(vfwy) = 5;%-12 -0=0  (Neumann) (3)
For a plane wave incident at angle 8, the stochastic aniogue of the Floquet
solution gives the random wave field of the form

o,z [ag) = eitop [em1S(ho)Z 7 ¢15(20)Z 3 y(p,2xy)] (4)
(- in ¥ is for Dirichlet and + for Neumann) where we have put

A= A =k sin 8y, S(ag) = (K2 - 22)1/2 =k cos 8, (5)
where kg = (k,8,,0) = (xg, S(Ay)) gives the wave vector of the specularly
reflected wave, The first and the second term of (4) give the primary field
for 62 = 0. The third term U giving the scattered field due to randomness is

a homogeneous random field in p and can be expanded in terms of Wiener-
Hermite orthogonal functionals:

U(p,Z|l) - eiS(l)ZAO(A) + IR e‘ill-p + iS(l+11)Z A1(11|1)d3(11) PR (6)
2

where we have shown only first two terms. The Wiener kernels A, and A§ can
be obtained approximately by solving the boundary condition {(2) or (3).

GREEN FUNCTION OVER RANDOM SURFACE

Let the source point above the random surface be at ry = (pg, zo). Then
the Green function satisfies the equation

(vz + kz)G(psZ|po,zo) = - 6(9 - po) <S(Z - Zo)s Z:ZO >0 (7)

the boundary condition {2) or (3) and the radiation condition. The Green
function can be constructed from (4) as follows:

G(p,2|pgs2q) = Golpszlpg:2g) ¥ Gglpszlpgszg)s 2,29 > 0 (8)
. . . . dl
6o(ps2l0g20) = Ly [ eTMpopal[eISN2 - Zo| & e1S(AM(zt20)1 = (9)
8? 2 . iS(a)z s(x)
Belprzlpgazg) = —n [ e1MP00) y(p,2)0)E " ar, (10)
s 0°“0 2 R
8 2 S(a

where G, gives the Green function for the flat surface (02 = 0) readily
expressible in terms of spherical Hankel functions. G; gives the scattered
wave due to surface roughness. We put p, = 0 in the following. By (6) the
(11) can be further divided into the coherent part g. and the incoherent
part g;., namely, Gg = 9. + Gj.:

o eaeris(a)(z4z,) AR)
9¢c(p,2]0,2,) 2 IR elAr 2% §%§T_ da (11)
9:c(p,210,2,) = jRZK(l,z,zo A )dB(a) + *o (12)
K(przszg|ny) = —= [ el erisOun)z+is(M) 2N [N g (13)
8wl ‘R2 S(x)

—696—



It is interesting to note that the coherent field (11) can be rewritten as
9c(p,210,2,) = IRgo(r - r')Q(r')dr', r=(p,2) (14)
Q(r) = &(z + ZO)T__T_ f Ao(2)da (15)

where g,(p,z]0,0) = e’kr/4nr denotes the free space Green function and Q(r)
gives an equivalent source distribution for coherent scattering produced on
the plane at the depth z = - Z, -

ASYMPTOTIC FORM OF GREEN FUNCTION AND POWER FLOW
We obtain the asymptotic form of the Green function at large distance
from the source and the surface; kr =k/p2 + zz->w, assuming the source be
fixed not very high above the surface. The asymptotic expression for the

total coherent part Ge. = Gy + g, is calculated to be

elkr . .
Ge(p.2]0,2o) v o— [e71kZoC0S8 + ¢1k25C088(y 4+ A (ksing,¢))], kr ==  (16)

4ur
and the coherent power flow per unit solid angle in the direction (8,9) is
Pe(8,852,)/P o = |e-ikzocose 3 eikzocose[l + Ao(ksine,¢)]|2 (17)

where P . = 1/(411)2 gives the power flcw per unit solid angle of a monopole.
The asymptotic expression for the incoherent part is calculated to be

elikr Ay (A]Ag-2)
9iclp,z10,2y)~ s kcos® [ 2e1S As-A)z o_%(i;:%y__dB(x) (18)
A; = k sinf cos¢ e, + k sing sin¢ ey (19)

where Ao denotes the projection of the scattering wave vector kr/r onto X-Y
plane. Then the average incoherent power flow per unit solid angle is

- 12coc? -ImS(Ag-2)zg AL (A A1) 2
Pic(8,832,)/P,, = kcos®8 [ 2e mS( )Zo|_l_1___i7_4 da (20)
B 2n /2 5(8,91(68,,9,)
= cosB f f ———Eag—gg—g-_ $1n8,d8 ,d¢, (21)
where the surface wave part is neglected in (21) assuming kz, >> 1, and
S(8, ¢ | 8,80) =kZcos6lAy (g~ Aol (22)

denotes the angular distribution of the incoherent scatteringZ)for the plane
wave with the incident angle (8,, ¢,). The power conservation law

1= (1/41Pyo) [2Tdo (/2P (8,032) + Pi (8,0 324)]sing o (23)
0 0
can be used to check the accuracy of approximate Wiener kernels Ay and A;.
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Fig.1 Coordinates and Wave Vectors INCIDENT WAVE

Fig.2 Angular Distribution of Total Fig.1
Coherent Power Flow (Dirichlet) Zy
solid 1ine: 02 = 0 (height4), ot

k2= 0.5,broken Tine: k&= 1.0,
dotted line: k2= 2.0
(2: correlation length)

fig.3 Angular Distribution of
Incoherent Power Flow (Dirichlet)

Fig.4 Angular Distribution of Total ko
Coherent Power Flow (Neumann)
Fig.5 Angular Distribution of REFLECTED,

Incoherent Power Flow {Neumann) WAVE
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