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1. INTRODUCTION 

Current developments in high resolution radar and remote sensing technology have 
created interest in the investigation of scattering and diffraction of transient waveforms from 
conducting and dielectric bodies of various shapes , because analysis of transient scattering 
is very useful for target identification and inverse scattering problems. Based on the 
Singularity Expansion Method (SEM)[ l]. which is one of the techniques available for 
solving transient electromagnetic problems, we can obtain the (fan sien t response by 
summing up an infinite number of natural modes. The eigenfrequencies of these natural 
modes are correspond to the poles of the scattered field in complex frequency domain, and 
are called the natural frequencies or resonance frequencies. Since the natural modes are 
excited by an incident pulse, it is very important to know the relationship between incident 
pulse and excited natural modes when we analyze the transient scattering. 

In this paper, we extract the natural frequencies from pulse responses by app lying 
Prony's method[2][3] and investigate the relationship between incident pulse and excited 
natural modes. First we calculate the natural frequencies of perfectly conducting cylinder by 
using Yasuura's method for eigenvalue problems[4]- [6]. Yasuura's method used here is 
one of the efficient and reliable numerical methods for electromagnetic boundary value 
problems [7][8]. Second we calculate the pulse responses fr om the object by us ing 
Yasuura' s method for ordinary scattering problems and Fourier synthesis technique [8][9], 
and extract the natural frequencies from them by applying Prony's method. By comparing the 
extracted natural frequencies with those obtained by Yasuura 's method fo r eigenvalue 
problems, we investigate the relationship between the incident direction of the excitation 
pulse and the excited natural modes. 

2. CALCULATION OF NATURAL FREOUENCIES 

Let us consider a perfectly conducting cylindrical object with mirror symmetric axes as 
shown in Fig. I. The surface of it is smooth and expressed by p'=p'(8') where prime denotes 
the point on the surface. According to Yasuura's method, we express the scattered field 'l' 
by the truncated modal expansion as follows: 

N 
'¥(p, 0); L cn(N) 'i'n(P , 0) , 'i'n(P, 0); Hn (2)(kp)expUnO) (I ) 

n =_N 
where cn(N) is the unknown expansion coefficients, fPn is the modal function which satisfies 
the Helmholtz equation, and Hn (2) is the Hankel function of the second kind. The natural 

frequencies, which are the Singularities of the scattered field in a complex frequency domain , 
can be characterized as the eigenfrequencies of the scattered field. According to the 
formulation of the eigenvalue problems described in Ref. [4][5], our problem is reduced to 

the problem of minimizing the following positive definite Hennitian fonn : 
D(rN,N) ; C'(N) H(rN,N) C(N) (2) 
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under the constraint 
C*(N). C(N) = 1 (3) 

where erN) is the column vector whose elements are unknown expansion coefficients, 
H(y,..N) is the (2N+l) x (2N+l) Hermitian matrix whose elements are inner product of the 
modal functions on the surface. YN =Jwa is a frequency normalized by a characteristic length a 
such as radius of circumscribed circle, and asterisk denotes the Hermite conjugate of. 
Therefore, our problem is reduced to the problem of searching the complex frequency YN 
which minimizes the positive definite Hermitian form n (YN.N). It is guaranteed that the 
approximate natural frequency YH uniformly converges to the true natural frequency as the 
number of truncation N tends to infinity [5] . Furthermore , the extended version called 
"Yasuura's method with smoothing procedure" [10] is also available for accelerating the 
convergence of the solution. 

In actual numerical calculation. we discretize the Hermitian form and employ the QR 
decomposition algorithm in order to reduce the amount of numerical computation [6]. 

3. EXTRACTION OF NATURAL FREOUENCIES BY PRONY'S METHOD 

In this section, we briefly explain about the extraction of the natural frequencies from 
the pulse response by using Prony's method [2](3]. The late time transient response can be 
represented as a summation of exponentially damped sinusoids, i.e., 

M 
l(t) = L Am exp(sm t) (4) 

m = 1 
where the Sm are the poles in the complex frequency domain and correspond to the natural 
frequencies to be found . We can find the Sm from a discrete set of sampled transient data 
l(n.1t) (n=O.I,2, .. . , 2M -I) where .11 is the size of the time-stepping interval. For 
convenience, we denote J(nl1t) by In. Then In satisfy the linear difference equation of order 
N which may be written as 

M 
L a" lp+k =0, p+k =n=O,I.2 • .. ·.2M-l (5) 

p=O 
where the roots of the algebraic equations 

M 
L apZP=O (6) 

p=O 
are exp{smLlr) = Zm. m=l, 2, .... M. If in Eq.(5) aM is defined equal to I . then the ap may be 

obtained by solving 
M-l 

L aplp+k=-IM+k. (7) 
p=O 

Once the Q p have been found. then the roo ts 2m of Eq.(6) can be found and poles are 
obtained by 

sm=(lnZm)/<lt. (8) 

4. NUMERICAL RESULTS AND DISCUSSIONS 

As the example, we choose the peanut shaped object which is expressed as follows: 

p'(O') = ( a ' oos'O'+ b' sin20' )112. (9) 

where a and b are major and minor axes res pectively (see Fig.1) . For convenience, we 
define the parameter of deformation 8 = bla ( 0 S 8 S 1 ). When 8 = 1 the cross section of 
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the object is a circle of radius a, and when 0 is small the cross-section of it has concave­
convex portions. 

First , we show the natural frequencies of this object obtained by using Yasuura's 
method for eigenvalue problems as described in Section 2. Here we consider the case of H­
polarization. Table I shows the obtained some dominant natural frequencies when 0 = 1 
(circular cylinder) and 0 = 0.5 (peanut shaped cylinder). This result shows that the natural 
frequencies of a circular cylinder are degenerate and they split into two sub-layers when the 
object is deformed [41. For circular cylinder we can easily show that the natural frequencies 
are the roots of dHn(2)<y)ldy = 0 for H-polarization. The index n in Table I corresponds to 
the order of the Hankel function and index J1 represents the label of splitting sub-layers. 

Next, we extract the natural frequencies from the pulse responses by applying Prony's 
method. As the incident pulse, we choose the modulated Gaussian pulse. Table 2 shows 
the ex tracted natural frequencie s for OJ = 0°, 90° and 45 °. When 9j = 45 ° both of the 
splitting poles are extracted, but when 9j = 0° and 90° one of them is extracted and the other 
is not. From this resu lt , we can find that the extracted natural frequencies depend upon the 
incident ang le , and this fact indicates that the incident pulse selectively excites the naluIal 
modes. This fact can be explained by employing the field distribution of the natural modes on 
the surface. Taking in to account the symmetry of the object and the quantum condition 
(resonance condi tion) of the natural modes, the field distributions of the natural modes on 
the surface are considered as illustrated in Fig.2 (four modes are shown). By considering 
the symmetry of the object, we can easily find that the modes of case I and 3 are excited for 
Oi = 0°, the modes of case 2 and 3 are excited for 9; = 90°, and all modes are excited for 8; = 
45°. If we assume that the field distributions of case I, 2, 3 and 4 in Fig.2 are correspond to 
the natural modes labe led (n, l1 ) = ( 1,0), (1,1), (2,0) and (2,1) respectively , then we can 
consistently explain the result of extraction of Table 2. 

5. CONCLUSIONS 

We extract the natural frequencie s from the pulse responses by applying Prony's 
method and investigate the relationship between the excitation pulse and the excited natural 
mod es. It is found from this results that the natural modes are se lectively excited 
corresponding to the incident direction of the excitation pulse. 
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Fig. I. Cylindrical object expressed by 
p'(8') = (a' co"8'+ b2sirf8')I" 

Table 1. Natural frequencies obtained by Yasuura's 
method for eigenvalue problems. 

n 0= 1.0 (circle) 0=0.5 (peanut) 

I 0.501 + j 0.644 
0.554 + j 0.864 (1' =0 ) 
0.662 + j 0.687 (1'=1) 

2 1.434 + j 0.835 
1.717 + j 0.904 (1'=0) 
1.733 + j 1.066 (1'= 1 ) 

3 2.374 + j 0.968 
2.873 + j 1.194 (11=0) 
2.815 + j 1.080 (1'= 1 ) 

Table 2 Natural frequencies extracted by Prony's method. (0= 0.5) . . 
n I' 8; = 0 0 8; = 90 0 8; = 45 0 

I 
0 0.572 + j 0.894 0.565 + j 0.820 
I 0.670 + j 0.678 0.637 + j 0.699 

2 
0 1.717 + j 0.904 1.704 + j 0.906 1.719 + jO.902 
I 1.745 + j 1.051 

3 
0 2.878+ j 1.197 2.877 + j 1.198 
I 2.819+ j 1.092 2.823 + j 1.099 
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Fig.2. Field distributions of the natural modes on the surface. 
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