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1. Introduction
Analysis of an electromagnetic wave scattering by a system of three-dimensional (3-D) dielectric
objects has been important for various science and engineering disciplines, and the multiple scat-
tering from simply shaped objects such as spheres and spheroids have been analyzed extensively
using quasi-analytical techniques.[1]-[3] In addition to such works, in order to obtain more pre-
cise scattering properties of variously shaped objects, multiple scattering from nonspherical and
nonspheroidal objects have also been analyzed using some numerical techniques.[4]-[6]

One of the reliable methods to analyze a 3-D scattering from variously shaped objects is the
Yasuura method. Using this method, single scattering from variously shaped objects have been
analyzed and valuable numerical data such as radar cross sections and pulse responses have been
provided so far.[7]-[9] Recently, this method has been applied to the multiple scattering from
perfectly conducting objects and the scattering from Chevichev particle with concave surface has
been analyzed.[10],[11]

In this paper, the Yasuura method to analyze the multiple scattering by 3-D dielectric objects
with various shapes is shown. To formulate the problem, the scattered field outside the objects is
expressed by a superposition of individual fields scattered by each objects and the individual field
is expanded by Hankel function based spherical vector wave functions. Also, inside each object,
the transmitted field is expanded by Bessel function based spherical vector wave functions. By
matching the boundary condition in a least square sense using an appropriate discterizing rule,
the unknown coefficients of the expansions are computed and numerical solutions that converge
to true ones can be obtained. Using the computed coefficients, various scattering properties in
the near and the far region can be computed. Here, radar cross sections of two dielectric objects
are computed as a function of a distance between them and the multiple scattering effects are
examined. Throughout this paper, the time factor ejωt is assumed and suppressed.
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Fig.1 Geometry of the problem.

2. Formulation of the problem
Here we consider a system of arbitrarily shaped 3-D di-
electric objects illuminated by a plane wave with a wave
number k. The number of the objects and the centers of
each objects are denoted by Ns and Oi(i = 1, 2, · · · , Ns),
respectively, and the permittivity and the permeability
of the ith object are given εi and µi, respectively as
shown in Figure 1. The direction of incidence and the
angle between the incident electric field vector and the
plane of incidence are denoted by (θinc, φinc) and α, re-
spectively. The scattered electric field E

s at a point P
outside the objects is given by a superposition of indi-
vidual scattered fields from each of the objects such as
E

s(r) =
∑Ns

i=1 E
s
i (ri), where r and ri are position vectors

of the point P in the global coordinate system of the ori-
gin O and ith coordinate system of the origin Oi, respectively and E

s
i denotes the scattered electric

field from the ith object. Referring to the Yasuura method [8], [9], the scattered electric field from
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the ith object is approximated as

E
s
i,N (ri) =

N∑

n=1

n∑

m=−n

{ai
mn(N)m(4)

mn(ri) + bi
mn(N)n(4)

mn(ri)} (1)

where ai
mn(N) and bi

mn(N) are unknown coefficients to be determined, N is a truncation size, and

m
(4)
mn and n

(4)
mn are spherical vector wave functions [12] defined by

m
(4)
mn(ri) = ∇× {rih

(2)
n (kri)Ymn(θi, φi)}, n

(4)
mn(ri) =

1

k
∇× m

(4)
mn(ri). (2)

In Eq.(2), (ri, θi, φi) denotes a spherical coordinate of the point P, and h
(2)
n and Ymn are a spherical

Hankel function of the second kind and a spherical harmonic, respectively.
The transmitted field inside the jth object is also expanded by the spherical vector wave func-

tions as

E
t
i,N(ri) =

N∑

n=1

n∑

m=−n

{ci
mn(N)m(1)

mn(ri) + di
mn(N)n(1)

mn(ri)} (3)

where ci
mn(N) and di

mn(N) are unknown coefficients to be determined, and m
(1)
mn and n

(1)
mn are

spherical vector wave functions defined by substitutingg h2
n with the spherical Bessel function jn

in Eq.(2)
Using the Faraday’s law and the relations ∇ × m = kn and ∇ × n = km, we can obtain

approximate expressions of the different magnetic (H) fields from those of the corresponding electric
(E) fields

The unknown coefficients ai
mn(N), bi

mn(N), ci
mn(N) and bi

mn(N) in Eq.(1) are determined so
as to match the boundary condition on the surface of the objects in a least square sense, that is,
so as to minimize a discretized norm defined by

Ω(N,Lθ, Lφ) =

Ns∑

j=1

[
Lθ∑

I=1

Lφ∑

J=1

|ν(r′j,IJ) × {
Ns∑

i=1

E
s
i,N (r′j,IJ) + E

inc(r′j,IJ) −E
t
j,N (r′j,IJ)}|2J(r′j,IJ)ω(r′j,IJ)

/
Lθ∑

I=1

Lφ∑

J=1

|ν(r′j,IJ) × E
inc(r′j,IJ)|2J(r′j,IJ)ω(r′j,IJ)]

+[
Lθ∑

I=1

Lφ∑

J=1

|ν(r′j,IJ) × {
Ns∑

i=1

H
s
i,N (r′j,IJ) + H

inc(r′j,IJ) −H
t
j,N (r′j,IJ)}|2J(r′j,IJ)ω(r′j,IJ)

/
Lθ∑

I=1

Lφ∑

J=1

|ν(r′j,IJ) × H
inc(r′j,IJ)|2J(r′j,IJ)ω(r′j,IJ)] (4)

where Lθ and Lφ denote the total numbers of sampling points concerning θi and φi, respectively,
and ν, J and ω are the normal unit vector, the Jacobian and the weight at the sampling point r

′

j,IJ ,

respectively, and E
inc and H

inc denote incident electric and magnetic fields, respectively as shown in
Fig.1. The prime of r′j,IJ indicates that the variable pertains to the surface of the objects. In Eq.(4),

if i 6= j, the spherical vector wave functions m
(4)
mn(r′i) and n

(4)
mn(r′i) that expand the scattered field

E
s
i,N are translated from the ith coordinate system to the jth one using a vector addition theorem

[13],[14]. By calculating the unknown coefficients that minimize the discretized norm, we can obtain
numerical solutions that converges true ones as the truncation size N increases.[15]
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3. Accuracy checks and numerical examples
In order to check the accuracy of solutions and investigate scattering properties of multiple objects,
here we consider two dielectric nonspherical objects whose surface are described by

r′i(θ
′

i) = ai(1 + δi cos ηiθ
′

i), | δi |< 1, i = 1, 2, · · · , Ns (5)

where ai, δi, and µi denote the mean radii, deformation parameters, and waviness parameters of
the objects, respectively. These objects are located on z-axis and the distance between the centers
of the objects is denoted by d

First, in order to determine the total number of sampling points Lθ and Lφ, convergence
properties of the discretized norms Ω(N,Lθ, Lφ) as a function of Lθ and Lφ for a fixed truncation
size N are computed. The results are shown in Fig.2 and it is seen that each discretized norm
Ω(N,Lθ, Lφ) takes constant values when Lθ/(N + 1) and Lφ/(N + 1) are greater than 2. In Figs.3
and 4, the discretized norms and radar cross sections as a function of the truncation size N are
shown when Lθ and Lφ are fixed to 2(N + 1). It is shown that the discretize norm monotonically
decrease and the radar cross sections converge as N increases. From these results, the total numbers
of sampling points should be Lθ = Lφ = 2(N + 1).

To investigate the multiple scattering effect, radar cross sections of two nonspherical objects
located on z-axis are computed. In Fig. 5, the radar cross sections as a function of d for different
permittivity εi are shown. Due to the multiple scattering effects, it is seen that the radar cross
sections have oscillatory behaviors, and the nearer the two objects located, the more strongly the
radar cross sections oscillate. This effect is more striking as the permittivity takes larger values.

4. Conclusion
Multiple scattering by 3-D arbitrarily shaped dielectric objects is formulated by using the Yasuura
method. By expanding the scattered fields and the transmitted fields by spherical vecor wave
functions and matching the boundary condition with the sampling points Lθ = Lφ = 2(N + 1), it
is shown that numerical solutions converging to true ones can be obtained. To examine the effect
of multiple scattering, radar cross sections of two nonspherical objects as a function of distance
between them are computed. It is shown that the coupling effect appears on the radar cross section
as an oscillatory behavior.
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Fig.2 Discretized norms vs. total numbers of sam-
pling points. (N = 5, Ns = 2, η1 = η2 = 2, δ1 =
δ2 = 0.1, a1 = a2 = a, d = 3a, ka = 1, θinc =
π/2, φinc = 0, α = 0)

Fig.3 Discretized norms vs. truncation size. (Ns =
2, η1 = η2 = 2, δ1 = δ2 = 0.1, a1 = a2 = a, d =
3a, ka = 1, θinc = π/2, φinc = 0, α = 0)

Fig.4 Radar cross section vs. truncation size. (Ns =
2, η1 = η2 = 2, δ1 = δ2 = 0.1, a1 = a2 = a, d =
3a, ka = 1, θinc = π/2, φinc = 0, α = 0)

Fig.5 Radar cross sections vs. distance between the
centers of two objects d. (Ns = 2, a1 = a2 = a, η1 =
η2 = 2, δ1 = δ2 = 0.1, ka = 2, θinc = π/2, φinc =
0, α = 0)
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