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ABSTRACT

The time dependent transport equation is used to study the transmission
of periodic pulses through a scattering environment. The transport equation
is solved by the moment method using triangular expansion functions.
Numerical results indicate the dependence of the incoherent intensity on pene-
tration depth, observation angle, albedo, pulse penetration depth and pulse
repetition rate.

1. INTRODUCTION

A gaussian plane wave pulse train of time period T seconds and
propagating through free space is assumed to be normally incident upon
a statistically homogeneous, isotropically scattering half-space region
characterized by absorption (0,) and scatter (Og) cross-sections per unit
volume. Transport theory is used to track the flow of energy through this
environment. Below, the time dependent equation for plane-parallel
regions is introduced. The moment method is then used to reduce this
integro-differential equation to a system of linear equations. Finally,
numerical results are presented.

2. FORMULATION

The intensity I, of the incident gaussian pulse train is chosen to be
an even function of time and hence is expressed as a cosine Fourier
series:
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where normalized coordinates z‘=0tz,t'=0tct are used,gt=05+0; and ¢ is the
speed of light in vacuum; So f(z',t') is the incident instantaneous power
density, §° is the average incident power per unit area in time period T',
angles 8,=¢, =0 for normal incidence, fy -is real and §(x) is the Dirac

delta function. For -T'/2 < t' < T'/2 and in the z'=0 plane, the incident

gaussian pulse shape is expressed as ,
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Assuming £(0,t') -~ 0 as t' > + T'/2, Fourier coefficients in (lb) become
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Allowing intensity to be the sum of two components - the coherent intensity
I. and the incoherent or diffuse intensity I4- and considering only the
latter, the time-dependent transport equation for normal incident and in
plane - parallel geometry takes the form [1 ]

YT,
3 I
Note that symmetry requires that Iy be independent of ¢ and albedo

W = 0g/0.. Boundary conditions which must be satisfied
by the solution to (4) are
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The first condition in (5) results because I4q can only leave the scatter
domain; the second condition appears because of absorption losses.

3. MOMENT METHOD SOLUTION

Let I4 be represented by the truncated series expansion
N
'LJ (=5 g 1“(z’f)c\n(r> p) (6a)
n=0

where In(z',t') are the unknown expansion coefficients and qp(M) are
triangular expansion functions
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where AU = Up-Uy 1 = 2/N and pp=(2n-N)/N. Restricting scatter angles to

those specified by u = up, m—O,...,N and letting
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yields from (4) the following system of (N+1) equations for (N+1) unknowns

Imo(2z), v=0,1,...N,:
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subject to boundary conditions of all v
(2 L _ (o)=o0, LmLN ® T, @)—>0 asz>o Sudlm (g

The homogeneous and particular solutions to (8) and (9) are deduced to be
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where sy are eigenvalues determined from the characteristic equation
N i n=0N
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with Re sy > 0, k = ﬁ%l »++.N so that (9b) is satisfied and where (9a)
yields the system of equations for the unknown constants Qui; Smy is the
Kronecker delta function.

4, NUMERICAL RESULTS

In Fig. 1, diffuse intensity is plotted versus penetration depth z'.
Initially, the diffuse intensity increases. After depth Z'=1.0, I4
decreases (not shown.). A comparison of Figs. 1 and 2 indicates that as
the period T' increases the pulse shape becomes more distorted. This
indicates that adjacent pulses of the signal with the larger period tend
to overlap more strongly than when T' is smaller. In Figs. 3 and 4, Ig
is shown at z'=0.1 in eight directions. Observe that at small
depth intensity is strongest near the vertical direction (6=87. 3%).
Observe also that for 6>90° I remains approximately uniform in time.
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