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1. Introduction 

T he ~rallsient propagation of electromagnetic pulses in a magllctoactive plasma has been 

of ill~erest for diagnostic purposes. One of the most popu lar approaches in st.udying pulse 

propagation ill t he plasma is La obtain an approximale analytical expression for the wave 

packet by using t he saddle-point method of int eg ration( Vidmar et al.[lJ;Felsen and ~Iar­

cu \·ilz[2j). In a previous st udy by Ishimaru[3] the transient excitation by a cu rrent sou rce 

in a lossless maglletoactive plasma was formulated, bu~ no numerical results were prese nt.ed. 

RecenlY,Yidmar et 01. have given some numerical results 011 the transient excita tion of delta 

fU llction current. source in the ionospheric FJ laye r 011 the assumption tllat. til e o bservation 

poiJII is located many wavelengths from the source by using the saddle-point approx imation. 

III this paper, we ex tend Ishimaru's formu lation to a more genera.1 case of two-component 

lossy magnetoplasma, and then use a numerical inversion method of the Laplace trans­

form( Hosono[4]) to e\·aluate the exact transient fi eld components. 

2 . General Formulation 

Can.esian coo rdinates are used with the;:: axis , parallel to the stat ic magnetic field Bo , 
which is assumed to be the d irection of propagation. It is weU know n that a magneto-ionic 

medium can support two independent circularl,\' polarized waves[3,5], However, it is shown 

that the time-domain formulation must consist of a proper combination of t.he two waves if 

we are t.o obtain a casu.al, real-time transient solution in the final expression[3J. In order to 

assure these criteria, th e correct formulation should be of the (orm 

(1 ) 

U R = D L = 

where· denot.es a complex conjugate and Br defines a Bromwich path in the complex .'I-plane 

(.'I = jw). wpe , wce are the angular elect.ron plasma and cyclotron irequencies,respectively. Co­

efficicn ts C R(S) and (:L (S) are functions of the source exci tation and can bc obtained using 

a standard procedure[I ,3J. nR and DL are t.he refractive indices of the rigilt- and left· handed 

ci rcularly polarized waves which are functions of s. Usi ng 3 = jw, then for a two-component 

plasma consisting of electrons and one ion species, we have 

] W z 
n

Z = ] + +' 
R ,(, + Z,) s(, + Z:) 

(2) 

where, s = l!:!!.- , Ze = Ve - jWce,Z, = V,- ;",I'Yc"Ve ..::L,V, = ..!:::L,t-Vee -!!'.U. W -
,",p~ ""I'<' ""I" - ""1'<' c' -

!!:'.u. , W, = ~. wp', Wci ale the angular ion plasma and cyclot.ron frequ encies; Ve, V, are the 
"",.., ""pc 

collision frequencies of electrons and ions, respect.ively. 
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3. The Excitation of Waves in a Maglletoactive plasma by a Current Source 
The excitation of waves in a magneto-ionic medium by a delta function current SO llrce is 

depicted in Fig.l ,where the current source is represented by .lz(z, t) and JI/( z, t).The trans­

form solution relating the electric field E(z , t) and the source current J (z, t),assuming no 

variation in :t and y, is found by integrating over the k-plane[3] 

E- ( k) __ c.o[i,(s ,k) -ji,(s,k) -'"R'/< i,(s ,k) + ji, (s,k) -,n'*J 
z S, - e + e 

4 DR Il L 
(3) 

E- (k) c.oli i.(s,k)-ji,(s ,k) -'"R'/O j,(s ,k) +ji,(s,k) -m"/<J S,"=-- e -} e 
II 4 DR n L 

(4 ) 

The time-dependent field components EA z, t) and Ey (:, t) for tl.e wave packet propagating 

with:; > 0 are lhen given by 

1 J, - , E, (z, t) = - . E,(k , s),' ds 
2 7r J 8T 

(5) 

Us ing the symmetry property of Eq.(2), this can be written as 

(6) 

(7) 

- ',",0 (jz (" k)-]j ,("k)) . 
withCR(S) - 411R' where c.c. denotes the complex conjugate of the first 

integral 011 the right-hand side of Eqs.(6) and (7) and is zero for a current source,such that 

J:r(s , k) = -jJy(s,k). In general, the polarization between E:r( z,t) and Ey{ z,t) is not circu­

lar.Note these integrals ca.nnot be evalu ated in a closed (orm. But,since eR(S) is well behaved 

(o r real s ,a Ilumerical solution is possible. Next we define the excitation pulse as 

where bet) and b(z) are the temporal and spatial della functions. J1 and h are dimensional 

cOll stants. The role of b(z) is to confine the current source to a sheet in the;; plane. For 

the propagation parallel to the magnetic field ,excitation currents, J:r( s,k) and Jy{s,k) are 

equivalent and produce similar wal'eforms. 

4. N umel·jca! Results aud Discussion 

The transient field components E:r(z, t) and Ey{:; , t) were evaluated by using the numer­

ical inversion method of the Laplace trasform which is proposed in (4] 

f(t) ~ L -I [F( s)J = '; (~( -1)" F. + ;, t,( -1 ),-1 A",F"+,) (9) 

where Fn ~ Im{F(aft + j [n - 0.5J 'II"/t)},A pq = 1,Ap,q_l = Apq +p Cq+1i a: approximation 

parameter; k,p: the number of truncation and Euler transformation terms. Here, we carried 
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Table .1 Ionospheric parameters 

parameter 

". 

"alue, normalized with w~ 

2l!' X 107 sec-I 

5.83 x 1O-3w~ 

O.10wpe 
3 A X 1O-6wpe 

1.055wpe 

.955wpe 

1.59 x 1O-5wpe 

5,41 X lO- lOwpe 

J, (o,t) x 

Bo 
Jy (o. t) 

z 

y 

Fig .1 Orientation of the delta function cu rrent. 

source, J z(.:,t) and J y(.::,t), with t=O 

out nu merical computatio n using parameters which make the relative e rror less than 10-5 . 

To permit compa.rison with ReL[l) , \1:e set h = 0 , and use the daj·t ime F2 la.yeT iono­

spheric parameters as given in Table 1, wh ere WR and WL are the cut·off frequendes of the 

right- and left.-handed circularly polarized wa\'es, respecti\'ely. The results are illustrat ed in 

Figs.2 and 3. In th ese figures T' = wpet, E~or(.::,t)(= - 4Er(:j') is th e normalized electric field 
"'p~PQ 1 

a nd <~(= ""t) is dim ension less distance from t he interface . 

Fig.2 illustrates the waveforms for the whis~ le r branch at (~ = 10, 100 and 400. The 

initial part of (: = 10 plot is a whistler branch prec ursor. The rapid increases ill amplitude 

fo r <~ = 100 and (: = 400 plots are closely related to th e wa'ie compo nents with (requencies 

near ..Jee /4 because th e group \'elocity at wee/4 at tai ns its maximum value in the case of a 

homogeneo us magn ctoplasma. The s ubsequent modu la tion en \'e lopes are res ulted from the ill­

terfe reJICe between the wave components abo\'e and below wc.e/-l. The wa\'e com ponents with 

w > w=J.l decay more quickly due to th e collis ional damping than those at W < wuJI. Nev­

e rtheless the th e en velope modulation becomes more en hanced at large r distances(C = 400). 

This is due to stronger interference caused by th e waves in the narrow band ju st around 

.... - · u /4 . 

Fig.3 s hows t he wa.veforms (o r th e high freq uency branch( i .e. quasi-free s pace mode 

wa\'es at W > wpe ). In this range there are two possible modes of propagation( right- and left­

handed wa\·es). T he figu res with ( : = 200 and 400 illust rate the progressive decomposition 

of the spike into it s frequency components. T hi s decomposition becomes more enhanced at 

inc reased (~ because small differences in group velocity over greater distan ces might resu lt in 
th e broadening of the spike . Then,the observed co nspicuous modulation envelope is resllited 

from the interference between the wa\'e components in the right- and left -handed polarized 

waves . Near t he cutoff frequ encies of these branches at WR and WL. wa\'e co mpon en ts with 

identical group \'elocities (vg - 0) have freq uencies which differ by WR - WL :::: Wee and pro­

du ce a modulation em'elope wit.h frequency wc.e/2. 
5. Conclnsion 

Only a few examples are given here because of limited iI.\·aila.ble space. but il obvious 

that tIle approac h mentioned above will open a new methodology fo r diffe rent areas and is 

an alt e rnath'e and simple meth od to long-exist ing meth ods[1]{2J. 
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Fig.2 Whistler wa.veforms for kliB o• 

with j ... (s , k) = J 1 and j y(",k) = 0 

TIM E.T 
Fig3. High frequ ency waveforms for k ll B o, 

with an expanded time scale 

The numerical inverse Laplace transform adopted in this paper has the following advantages 

o\'er the previous saddle point method; (1) It is an exact soultioll to the problem valid (or any 

plasma parameters, and also even at the initial arrival of the pulse, (2) Any linear dispersion 

relation may be used , (3) Computation time is moderate , and (4) Similar approaches can 

be utilized in different areas including tURsient propagation of waves with different initial 

waveforms such as lightning, Gaussian envelo pe ca rrier pulse etc. 
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