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Abstract

The mean dyadic Green's function for a two-layer anisotropic random medium with arbitrary
three-dimensional correlation functions has been calculated with the zeroth-order solutions to the
Dyson equation under the nonlinear approximation. The effective propagation constants are deter-
mined for the coherent vector fields propagating in the anisotropic random medium layer. There
are four characteristic waves corresponding to the ordinary and extraordinary waves with upward
and downward propagating vectors.

Introduction

The study of the coherent (or mean) wave propagation in continuous random medium has
been of great interest in the fields of microwave remote sensing of earth environment and optical
communications in the atmosphere. To understand the coherent wave motion in random medium,
we must solve the Dyson equation |1}, which is an exact equation for the mean field or the mean
dyadic Green'’s function. The mass operator that appears in the Dyson equation is approximated in
the form ol an infinite series. The most commonly used bilocal approximation leads to solutions with
potentially severe range restrictions and it also leads to solutions that are energetically inconsistent
with the Bethe-Salpeter equation under the ladder approximation. A better approximation which
circumvents these difficulties is the nonlinear approximation in which more muitiple scattering terms
are included. The mean Green's function with the nonlinear approximation was first calculated by
Rosenbaum (2] for the unbounded random medium using the Fourier transforin method. Tsang and
Kong [3-4 introduced the two-variable expansion technique to find the nonlinearly approximated
mean Green’s functions for the two-layer random medium with one-dimensional fluctuation |3} and
for the half-space random medium with three-dimensional fluctuation [4}. The vector problem has
been solved for the mean dyadic Green’s function (MDGF) with the nonlinear approximation by
Zuniga and Kong i5] for the two-layer case.

While extensive efforts are being made in the calculation of the mean Green's function for
an isotropic random medium, the MDGF for an anisotropic random medium has not been fully
developed. Liu [6' calculated the effective dielectric tensor and propagation constant of mean wave
in a turbulent magnetoactive plasma medium by the first-order iteration which corresponds to the
bilocal approximation. Dence and Spence |7} investigated the coherent wave motion in random
anisotropic media and evaluated the effective dielectric tensor and the MDGF for an unbounded,
uniaxially anisotropic random medium by solving the bilocally approximated Dyson equation.

Iu this paper, we consider a bounded, anisotropic random medium and solve the Dyson equation
with the nonlinear approximation. The permittivity tensor of the random medium is assumed to
be uniaxial with an optic axis tilted off the z-axis by some angle both for its mean and for randomly
fluctnating part. We employ the two-variable expansion technique to obtain a zero-order solution
for the mean dyadic Green's functions of a two-layer anisotropic random medium with arbitrary
three-dimensional correlation functions.

Formulation
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Consider an anisotropic random medium layer with boundaries at z = 0 and z = —d as shown
in Figure 1. The anisotropic random medium is characterized by its permittivity tensor

(7)) = &, 1 €y (F) (1)

where &;,, =< ,(7) > is the mean part and &,;(¥) represents the randomly fluctuating part whose
ensemble average vanishes. The upper region is free space and isotropic with permittivity ¢, and
the lower region is homogeneous and isotropic with permittivity -». All three regions are assumed
to have the same permeability u. In general, &,., and é,;(r} are taken Lo be uniaxial with an optic
axis tilted off the z-axis by angles ¢» and ¢, respectively, as shown in Figure 2.

The mean dyadic Green’s function (DGF) of a point source imbedded in an anisotropic random
mediu[n!] satisfies the Dyson equation which under the nonlinear approximation takes the following
form |8
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v
where 5(?) = w?ue ;(7) and the spatial integration extends over the layer of the anisotropic random

medium. The first and second subscripts of the DGF indicate the regions containing the observation
point and the source point, respectively. The third subscript m indicates that the DGF is the mean

dyadic Green's function (MDGF). It is assumed that Q(7) takes the following form:

() =Q("7 (3)

where Q(F) = w?ue);(7) and 7 is a dielectric tensor of ithe permittivity fluctuatation associated with
the geometry. We define the correlation function as

C(r - 72) =< Q(F)Q(F2) > (4)
and introduce the Fourier transforms of the mean DGF and the correlation function:
el == 1 %L = (% ik, An—p
Giu(7.70) = W/ d%k,. Gy 1ya (K, 2, 20)e e 0700 {3)
C(F—72) =6 / 7 d(a)e= "I (6)
where k,, = ik, + gk, and d°k, = dk,dk,. Substituting (4)-(6) into (2) and performing the transverse
integrations (d°f, = dzady» and d°&, = du,da,}. we obtain
d'_’
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-

To solve (7). we make use of the two-variable expansion technique (or the multiple scale analysis)
to handle the secular terms that arise. which has been used to study the long-distance behavior
of wave propagation in an isotropic random medium [3-5. With the variance & to be a small
parameter, we introduce the long-distance scales as

=0z, Su= dz, &= b2z (8)
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and expand the Fourier transformed mean DGF in a perturbation series

= - =[v T c=i) 7
Toimlkpzoz0) = 31 (B2, S 200 60) + 6510, (K2 Si20, S0) + - ()

where the superscript denotes the order of the solution for the MDGF. Here small & physically
corresponds to weak fluctuations. Following the procedures of the two-variable expansion technique
to zeroth order, we calculate the corrections to the propagation constants which accounts for the
multiple scattering due to random fluctuations.

Results and Discussions

The resultant expressions for the zeroth-order MDGF in region | are shown to be

5;,,,(1? ru) = (2—;-)—,_; /dl;’,e"ir (|
{[otky)er <2 + Aa(k,)o(- ki )e ™2
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+ Dalk,)e(kit)e™ e 4 Dy(k,)é(kid)e =]}, z> 27 (10)
where
"“H(EI‘) = kll': - 6’\”"(7‘;/') (] ]'])
Nalk,) = k%, + 624 k,) (11.2)
noulk,) = k72 + 627 (k,.) (11.3)
n.alk,) = kit - 62 (k,) (11.4)

are the effective propagation constants of the characteristic waves propagating in an anisotropic
random medium layer. All the variables and the coefficients depend on the angles of propagation.
The first and second parts in (10) match with the horizontal and vertical polarization parts of the
MDGF in region 0, respectively. The MDGF in region 1 for z < 2z can be obtained by using the
symmetrical property of the DGF. The MDGF s in regions 0 and 2 are obtained by matching the
boundary conditions at z =0 and z = -d.

As seen from the results for the MDGF given by (10), four characteristic waves propagate in
an anisotropic random medium layer. They are the ordinary and extraordinary; the upward and
downward propagating waves. These four coherent waves propagate with four distinctive effective
propagation constants given by (11.1)-{11.4).

The correction to the propagation constants caused by the anisotropic random inhomogeneities,
Ak, (B) = ou,0d, eu, ed, is shown to be complex in general even when the mean permittivities. « |
and ., are purely real. It indicates that the coherent ordinary and extraordinary waves experience
an exponential decay. caused by scattering of waves as they propagate in an anisotropic random
medium, even though the medium is lossless. In addition the coherent waves can be slowed down or
speeded up, again as a consequence of the random inhomogeneities. Typical numerical results for
the corrections to the propagation constants can be obtained as a function of propagation angles
and polarizations.
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Figure 1. Figure 2,
11ering geometry of a two-layer anisotropic Geometrical configuration of permittivity tensor
dom medium in an anisotropic random medium layer.
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