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Abstract— Efficient and simple formulations of the Perfectly
Matched Layer (PML) are presented for truncating metamaterial
Finite Difference Time Domain (FDTD) grids. The formulations
are based on incorporating the Z-transform theory into the
FDTD algorithm to model the frequency dependence property
of the metamaterials. Numerical example carried out in one
dimensional metamaterial domain is included to validate the
proposed formulations.

Index Terms— Metamaterial, finite difference time domain,
perfectly matched layer, Z-transform.

I. I NTRODUCTION

In recent years, the electromagnetic metamaterials with
simultaneously negative electric permittivity and magnetic
permeability [1] have been received much attention due to
their unusual electromagnetic properties. These materials, re-
ferred as Negative Index Materials (NIM), have been realized
by using different models such as the cold plasma, Drude
medium and Lorentzian medium models. Recently, the Finite
Difference Time Domain (FDTD) method [2] has been used
successfully in simulating electromagnetic wave propagation
in domains that have metamaterial properties [3]-[8].

When the FDTD method is used for modelling open
region metamaterial domains, efficient Absorbing Boundary
Conditions (ABCs) are needed to truncate the computational
domain. Berenger’s Perfectly Matched Layer (PML) [9] has
been shown to be one of the most effective FDTD ABCs. Very
recently, different PML formulations have been successfully
introduced for truncating metamaterial FDTD computational
domains [10]-[12]. In these formulations, the auxiliary differ-
ential equation (ADE) method and the bilinear frequency ap-
proximation technique have been incorporated into the FDTD
implementations of the metamaterial.

In this paper, alternative PML formulations are presented
for truncating metamaterial domains. The formulations in-
corporate the Z-transform theory [13] into the FDTD imple-
mentation of the frequency dependence of the metamaterials.
The method has the advantage of simplicity as it allows
direct FDTD implementations Maxwell’s equations in the
metamaterial domains. Numerical example carried out in one-
dimensional (1-D) domain composed entirely of Lorentzian
type metamaterial is included to validate the proposed formu-
lations.

The paper is organized as follows. In section 2, the for-
mulations of the proposed method are presented. In section
3, numerical results are included to validate the proposed
formulations. Finally, conclusions are included in section 4.

II. FORMULATION

Using the PML formulations of [12], the normalized field
equations for az−polarized transverse electromagnetic (TEM)
wave propagating through metamaterial domain along the
x−direction can be written in the frequency domain as

jωεr(ω)SxẼz = c
∂

∂x
H̃y (1)

jωµr(ω)SxH̃y = c
∂

∂x
Ẽz (2)

where Ẽz, and H̃y are the Fourier transform ofEz and Hy

fields, respectively,εr(ω) and µr(ω) are, respectively, the
permittivity and permeability of the metamaterial, andSx is
the PML parameter defined as [12]

Sx = 1 +
σx

jωεoεr(ω)
(3)

where σx is the PML conductivity profile along the
x−direction. In this paper,εr(ω) and µr(ω) are assumed to
be identical and realized with a Lorentz medium model [4]
given by the following expression:

εr(ω) = µr(ω) = 1 +
ω2

p

ω2
0 − ω2 + jωΓ

(4)

where ωp is the plasma frequency,ω0 is the resonance fre-
quency, andΓ is the absorbtion parameter of the medium.
Substituting (3) and (4) into (1) and (2), the following can be
obtained

jωẼz + jωD̃z +
σx

εo
Ẽz = c

∂

∂x
H̃y (5)

jωH̃y + jωB̃y +
σx

εo
H̃y = c

∂

∂x
Ẽz (6)

whereD̃z and B̃z are given by

D̃z = κ(ω)Ẽz (7)

B̃y = κ(ω)H̃y (8)
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whereκ(ω) is given by

κ(ω) =
ω2

p

ω2
0 − ω2 + jωΓ

(9)

By using the Fourier transform relationjω → ∂/∂t, (5) and
(6) can be written in the time domain as

∂
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Ez +

∂

∂t
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σx

εo
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∂
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Hy (10)

∂

∂t
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∂

∂t
By +

σx

εo
Hy = c

∂
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Ez (11)

Equations (10) and (11) can be discretized by using the FDTD
algorithm [2] as
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where∆t is the time step,∆ is the space cell size,χ = c∆t/∆
and

r0i =
1 − pi

1 + pi
, and r1i

=
1

1 + pi
(14)

with

pi =
σxi

∆t

2ε0
(15)

In (12) and (13),Dn+1
z andBn+1

y can be computed easily from
(7) and (8), respectively, by using the Z-transform theory [13].
Hence, (9) can be written in the Z-domain [13] as

κ(Z) =
b0Z−1

1 + a0Z−1 + a1Z−2
(16)

whereZ is theZ−transform variable anda0, a1 and b0 are
given by

a0 = −2e−α∆t cos(β∆t), a1 = e−2α∆t ,

b0 = γe−α∆t sin(β∆t) (17)

with

α =
Γ
2

, β =
√

ω2
0 − α2, and γ =

∆tω
2
p

β
(18)

Using (16) and taking the Z-transform of (7) and (8), the
discretization ofDz andBy can be obtained easily by using
the Z-transform relationZ−mW (Z) → Wn−m as

Dn+1
zi

= −a0D
n
zi
− a1D

n−1
zi

+ b0E
n
zi

(19)

Bn+1
yi+1/2

= −a0B
n
yi+1/2

− a1B
n−1
yi+1/2

+ b0H
n
yi+1/2

(20)

It should be pointed out that the proposed formulations are
applied in the PML regions at the domain boundaries. In
non-PML regions, i.e., in the inner FDTD domain, it is only
required to set the coefficientsr0 and r1, defined in (14), to
unity.

0 5 10 15 20 25
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time (ns)

E
le

ct
ric

 F
ie

ld
 (V

/m
)

E
z
 at Point 1

E
z
 at Point 2

Fig. 1. Early time domain response ofEz as observed 20 cells (Point 1)
and 40 cells (Point 2) away from the excitation point.

III. SIMULATION STUDY

To show the validity of the proposed formulations, a
z−polarized Gaussian pulse, with a central radial frequency
equals toωc = 5.0 × 109rad/s, was excited at the center of
1-D computational domain which extends in thex direction
and entirely composed of metamaterial realized with a Lorentz
model [4] with the parameters ofω0 = 1.0 × 109rad/s,
ωp = 6.9282 × 109rad/s and Γ = 0. With these choices,
εr(ω) = µr(ω) = −1 at the peak of the incident spectrumωc.
The size of the computational domain was100∆x where∆x
= 5mm. In this test, the time step was chosen as∆t = 8.33ps
and the simulation was carried out for the first 32768 time
steps.

Figure 1 show the time domain response of theEz field
recorded at two points: point 1 is located 20 cells and point
2 is located 40 cells away from the excitation point. Both
ends of the computational domain were terminated by eight
additional PML layers with a quadratic conductivity profile
and with 0.001% theoretical reflection coefficient, i.e., PML[8,
2, 0.001%], as defined in [9]. As can be seen from Fig. 1, the
early time response of theEz field at point 1 occurs before
the response at point 2. This confirms that the metamaterial
satisfies the causality principle [3]. On the other hand, it is
interesting to note that the response at point 2 starts to lead
the response at point 1 in the late time as can be seen in Fig.
2 (an expanded view of Fig. 1 in the late time). This is due
to the negative index properties of the metamaterial [3].

To measure the reflection performance of the proposed
formulations, a reference field is needed. In this paper, the
reference field was computed by using a larger domain with
the size of1000∆x and truncated by 32 PML layers with
the parameters of PML[32, 4, 0.001%]. Figure 3 shows the
relative reflection error of the proposed PML formulations as
observed one cell away from the PML/computational domain
interface for four and eight PML layers with the parameters
of PML[4, 2, 0.001%] and PML[8, 2, 0.001%]. The reflection
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Fig. 2. Late time domain response ofEz as observed 20 cells (Point 1) and
40 cells (Point 2) away from the excitation point.
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Fig. 3. Relative reflection error of the proposed PML as a function of time.

error was computed as

RdB = 20 log10

(∣∣ER
z (t) − ET

z (t)
∣∣

max [|ER
z (t)|]

)
(21)

whereET
z (t) is the field computed using the test domain, and

ER
z (t) is the reference field computed using the larger domain.

It is apparent from Fig. 3 that good absorbing performance
of the proposed formulations has been achieved. Finally, the
reflection performance of the proposed formulations as func-
tion of frequency was studied. Figure 4 shows the frequency
spectrum of the PML reflection coefficient as obtained by
using the proposed formulations and by the PML formulations
of [12]. The reflections coefficient was observed one space
cell away from the PML/computational domain interface and
computed as

RdB(f) = 20 log10

∣∣∣∣∣F
{
ER

z (t) − ET
z (t)

}
F {ER

z (t)}

∣∣∣∣∣ (22)

where F {.} is the Fourier transform operation. Similar to
results reported a single above, the proposed formulations
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Fig. 4. Reflection coefficient of the proposed PML formulations as a function
of frequency.

give good absorbing performance over the frequency range of
interest. Furthermore, it should be mentioned that the results
of the proposed formulations are very similar to the results
obtained by using the PML formulations introduced in [12].
Also, it must be noted that there a sharp increase in the
reflection coefficient in the frequency range of 0.1-0.3 GHz,
but this is mainly due to the resonance frequency of the
metamaterial, i.e.,f0 = ω0/2π = 0.15915GHz. Finally,
it should be mentioned that the reflections start to increase
for frequencies beyond 1.60 GHz. This is because the pulse
used in this paper does not contain significant frequency
components at those frequencies.

IV. CONCLUSION

In this paper, efficient and simple PML formulations are
presented for truncating metamaterial computational domains.
In the proposed formulations, the frequency dependence of
the metamaterials has been implemented in the FDTD algo-
rithm by using the Z-transform theory. Numerical example
carried out in one dimensional domain composed entirely of
Lorentzian type metamaterial show that good absorbing perfor-
mance has been obtained with the proposed PML formulations.
The formulations can be extended to 2-D and 3-D cases in a
similar manner.
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