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I. Introduction

The studies on the scattering by an impedance circular cylinder with a radius of curvature
sufficiently larger than the wavelength have been an important research subject for a variety of
applications in the area of antennas and propagation [1]-[7].

In the present study, we shall derive a novel uniform GTD(extended UTD) solution for
the scattered field by an impedance circular cylinder. The extended UTD solution, derived
by applying the higher-order asymptotic formulas for the cylindrical functions, can be applied
in the wide area extending from the transition region near the shadow boundary to the deep
shadow region where the current UTD solution [4]~[6],[8] becomes increasingly inaccurate
with the increasing frequency. We shall also derive the modified UTD solution from the new
generalized Pekeris carot function by applying the residue theorem. The modified UTD solution
is the improved version of the current UTD and the GTD and can be applied uniformly from
the transition region in the lit region to the deep shadow region including the region near the
impedance cylinder.

The validity of the extended UTD and the modified UTD is confirmed by comparing with
the exact solution obtained from the eigenfunction expansion.

II. Uniform Asymptotic Solutions
2.1 Formulation and integral representation

Fig.1 shows the impedance circular cylinder with the radius of curvature a, and the cylindri-
cal coordinate system (p, ¢, z) and the cartesian coordinate system (z,y, z). When the impedance
cylinder is illuminated by an incident wave radiated from a line source Q(py, ¢o), the frequency-
domain scattered field observed at the point P(p, ¢) can be represented by the eigenfunction
expansion. Then using the usual Watson transform, the eigenfunction solution is transformed
into a integral representation as follows.
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where u¢ denotes either the scattered electric field E¢(E-mode) or the scattered magnetic field
H?(H-mode), Z, the normalized surface impedance of the cylinder. The time factor exp(—iwt)
is suppressed. Eq.(1) describes only the scattered field excited by the incident wave on the
impedance cylinder from the counterclockwise direction without circulating around the cylinder.
Various scattered field representations are derived from (1) in the following sections.

2.2. Extended UTD solution in the transition region near the SB

Fig.2 shows the shadow boundary(SB), the transition region near the SB, and the scattering
phenomena by the impedance cylinder. When the observation point P(p, ¢) is located in the
transition region near the SB, the Debye’s approximation:

H{D (k) ~ (2/m) 1 (kr)? = 17} exp [if /()2 =17 —veos ! 7} — i @)

for the Hankel functions H, ,Sl)(kpo) and H,Sl)(kp), and the Airy function approximations:
HOD (ka) ~ —(ka/2)"23w) o(t), v=ka+Mt, M = (ka/2)'/3,

v

wio(t) = Ai'(t) FiBi'(t) (3)

for the Hankel functions H,Sl)’(z)'(ka) are applied in (1). Then by performing the straightforward
analysis one may derive the following extended UTD solution.

ud ~ i (Q1) exp(ik€) I(€, L) exp(iksz) /v/52 (4)
Usy,in(Q1) = exp(iksy + im/4)/\/87ks1, s1=1/p3 — a2, so =+/p?>—a? (5)
¢ =ab, 0=|¢— do| —cos"(a/po) — cos™'(a/p) (6)
where the integral I(£, L) is given by
116 1) = B[ - "R R0 + (6, 1)], B = ~M VTR, @
F(X) = —2iX exp(—iX?) / ” exp(it®)dr, X =V2kL 0/2, (8)
X
. _exp(—im/4) [ wh(t) — qs’hmg(t) M?
Pin(& L) = 2/ /OO wi (t) — gspwi(t ) xp(ict + Zﬁ#)dt
exp(—in/4) [ Ai'(t) — gspA (t) M?

+ Nz /0 wh(t) — gs, h71;1(t) xp(ict + Zﬁt Jat, )

E= MO, L=s1s2/(s1+s2) ,qs =1iM/Zs (E —mode) , q, =iMZ; (H— mode). (10)

The computation time and the accuracy of the numerical integration of the generalized Pekeris
function pf (€, L) in (9) are the same as those for the computation of the conventional Pekeris
function applied in the UTD [§] .

It will be shown in Sec. III that the extended UTD in (4) can be applied in the wide area
including the deep shadow region near the impedance cylinder with the large ka value.

2.3. Modified UTD solution
The integral representation I(£, L) in (7) expressing the scattering phenomena occurring
along the arc of the impedance circular cylinder may be represented by

(e, 1) = B(k)eXp;?/i;/ 4 /C Z?Eg:gzgjgg (zgtHQZ‘Z—LtZ)dt (11a)
eplin/) [ AN —audit) M
= 5™ [ e et + i )i = P&, (11
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where the integration contour C, is running along the positive imaginary axis from 200 to 0
and then along the positive real axis from () to oo in the complex ¢-plane. The new generalized
Pekeris carot function Ps’h(f,L) in (11b) can be evaluated rigorously by applying the residue
theorem. Substituting the residue series solution into (4) and performing the straightforward
manipulation yield the following modified UTD solution

ud ~ Uz,m(Q1){Z D (Q1) A (Q1) exp(ikl — Q) Dy (Q2) A (Q2) } G (ks2) (12)
m=1

where Dy, (Q1,2) denotes the surface diffraction coefficient at the diffraction point @ 2(see Fig.2),
Q,,, the attenuation coefficient of the creeping wave propagating along the arc of the impedance
cylinder from the diffraction point Q1 to Q2, and A,,(Q12) is the new coefficient which modifies
the conventional GTD’s diffraction coefficient D,,(Q1.2). Those coefficients corresponding to the
H-mode case are defined as follows:

Dyn(Q12) = (2M /o) ? [{Ai' (—q)/Gm}, Qn = Moy, exp(—im/6), (13)

. wh(t
Am(Q12) = exp {M?02, exp(iT1/6)/(2ks12) }, gm =1 — qh{ﬂ}. (14)
tmwi (tm)
The eigenvalues o,,(m = 1,2,3---) and the corresponding t,, are obtained from the following
characteristic equation [4],[9]

s
—g—

Ai'(—om) — exp( 6)Z'MAZ'(—(Tm) =0, tm = omexp(in/3). (15)
The coefficients Dy, (Q1,2), m, and Ay, (Q1,2) for the E-mode case are defined in similar manner.

We will show that, in Section ITI, the modified UTD solution in (12) can be applied even in
the illuminated side of the transition region and in the deep shadow region where the current
UTD solution [5],[6] deviates substantially from the exact eigenfunction solution.

2.4. Extended UTD solution in the transition region in the illuminated region
When the observation point is located in the illuminated region in the transition region,
the creeping angle 6 defined by (6) takes the negative value(see Fig.2). Then by substituting

0= —|f and & = £ = —|¢] = —M|6] into (4), one may derive the following extended UTD

solution which can be applied in the illuminated region.

Ul ~ g+ U, Uy ge = exp(ikLy +in/4)/\/87k Ly (16)

0 = ., 4n(Q1) exp(—ikal0]) I €, L) exp(iks2) /52 (a7)
- exp(em/4 . 02 . A

16.0) = 50 [ - "2V 16 D). X = VEREWI2, €= Mo (18)

where u, g, defined in (16) denotes the direct geometrical ray radiated from the source () and
reaching the observation point P. The distance from @ to P is L,.

ITI. Numerical Results and Discussions

In this section, we perform the numerical calculations required to assess the validity and the
utility of the various asymptotic solutions derived in the previous section. Only the typical results
are presented in Figs.3 and 4 since all of the relevant solutions apply to the other parameters
with the accuracy similar to those shown here.

In Fig.3, the electric field magnitude curves(E-mode) are calculated as the function of the
azimuthal distance |¢ — ¢g|. The parameters used in the calculations are ka = 78.0, a = 10.0,
po = 150.0, p = 90.0, and ¢ = 8.0, o(conductivity)= 1.0. The source and observation points
are located far away from the impedance cylinder. The SB is located at |¢ — ¢o| = 169° in this
calculation. The extended UTD(- - -) in (4), the modified UTD(o) in (12), the conventional
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UTD(- A -) [5],]6] , and the geometrical optics(GO) agree excellently in the respective regions
with the exact solution(—) calculated from the eigenfunction expansion.

In Fig.4, the E-mode electric field magnitude curves observed near the impedance cylinder
are calculated as the function of |¢ — ¢g|. The numerical parameters ka = 78.0, a = 10.0,
po = 15.0, p = 12.0, and € = 8.0, 0 = 1.0 are used in the calculations. The extended UTD and
the modified UTD agree very well with the exact solution, while the conventional UTD becomes
increasingly inaccurate as the observation point moves toward the deep shadow region, i.e., as
|¢ — ¢o| increases in the shadow region. It is interesting to note that the modified UTD in (12)
agrees every well with the exact solution even in the illuminated region near the SB.
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Fig.3 Comparison of asymptotic solutions
with the exact solution for the observation

Fig.4 Comparison of asymptotic solutions
with the exact solution for the observation

point located far from the impedance cylinder. point located near the impedance cylinder.

V. Conclusion

In this paper, by applying the higher-order asymptotic formulas for the Hankel functions,
we have derived the novel extended UTD and modified UTD solutions for the scattered fields
by the impedance circular cylinder. The validity and the physical interpretation of the uniform
asymptotic solutions are confirmed by comparing with the exact solution calculated from the
eigenfunction expansion.
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