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Abstract – The differences between the characteristic 

modes(CMs) and X modes(XMs) are pointed out then the 
relations between these two types of modes are discussed 
through an example of a thin strip dipole. Finally it is concluded 

that the resonant information of an antenna, including resonant 
frequency and resonant current, exists only in the imaginal part 
of the impedance operator (reactance operator) of the antenna.  

Index Terms —Characteristic Modes (CMs), X Modes 
(XMs), relations,  impedance operator, antenna theory. 

1. Introduction 

The theory of characteristic modes (TCM) was first 

proposed by Garbacz and Turpin in [1]. Then Harrington and 

Mautz refined the theory under the help of electric field 

integral equation and they obtained the most common format 

we know now. In [2] and [3] they connected the CMs with 

the electric field integral operator Z (also called the 

impedance operator since it has the dimension of impedance) 

and proposed a numerical method in general to calculate the 

CMs. The application of TCM in modern antenna design is 

illustrated in [4]. It emphasized that any antenna has a set of 

orthogonal CMs which only relate to the impedance operator. 

The real radiation field of the antenna can be represented by 

the superposition of the associated modal fields. In addition 

to the conventional CMs, three new types of modes were 

proposed in [5] and they are also only related to the 

impedance operator as CMs acts. But until we write this 

paper, it seems that the effects of the impedance operator on 

the aforementioned modes have not been systematically 

studied. In this paper, the relation between CMs and XMs are 

discussed first. Basing this, we study the real part and the 

imaginal part of the impedance operator and their different 

contributions to the antennas. In the following sections, these 

two parts will be called the resistance and the reactance 

operator, respectively, for brevity.  

2. CMs and XMs 

CMs are defined by the following generalized eigenvalue 

equation: 
CM CM CM

n n nXJ RJ                             (1) 

where 
CM

nJ represents the thn CM, R and X  represent the 

resistance and reactance operator, namely 
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( *) / 2, ( *) / 2R Z Z X Z Z j                       (2) 

To ensure the uniqueness, CMs are normalized as 

,CM CM

m n mnJ RJ                                  (3) 

,CM CM CM

m n mn nJ XJ                              (4) 

XMs are defined by the following eigenvalue equation: 
XM XM XM

n n nXJ J                             (5) 

where 
XM

nJ  represents the thn  XM. 

To ensure the uniqueness, XMs are normalized as 

,XM XM

m n mnJ J                                (6) 

,XM XM XM

m n mn nJ XJ                             (7) 

, ,CM XM CM

n n nJ J  and 
XM

n are all real since both R and 

X are real symmetric operators.  

We consider the frequency and current distribution where 

an antenna stores null energy as the resonant frequency and 

the resonant current of the antenna. Notice that an antenna’s 

stored energy can be evaluated by 

  , / 2Antenna Stored Energy J XJ         (8) 

 Combining (4)(7), we can know that for both CMs and 

XMs, the frequency and modal current where the eigenvalue 

0   can be seen as the antenna’s resonant frequency and 

resonant current aforementioned, respectively. 

Different from CMs, only the reactance operator is used to 

figure out XMs. This fact makes it possible for us to 

distinguish the different impacts of resistance and reactance 

operator on an antenna. 

To figure out the CMs and XMs, we use RWG functions 

[6] as the basis and test functions in order to convert the 

aforementioned operator equations into matrix equations: 

   CM CM CM

n n nX I R I                            (9) 

  XM XM XM

n n nX I I                                (10) 

3. Relations between CMs and XMs of a thin strip 

dipole 

In this section we illustrate the relations between CMs and 

XMs by comparing these two types of modes of a thin strip 

dipole. Having a length of 100L mm and a width of  

1W mm  , this dipole is meshed with about 200 triangles.  
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Fig.1 shows the variation with frequency of the 

eigenvalues of the first four CMs and XMs. It can be found 

that CMs and XMs have the same modal resonant 

frequencies which locate at 1.4GHz, 2.9 GHz, 4.4 GHz and 

5.9 GHz, respectively. In other words, both CMs and XMs 

contain the resonant frequency information of the dipole. It 

should be noted that the eigenvalue in logarithm scale are 

using 10lg( ) since eigenvalue has a meaning of power. 

 
(a) 

 
(b) 

Fig. 1.The first four (a)CMs and (b)XMs 

In spite of their very different magnitudes, the normalized 

modal current distributions of CMs and XMs are found to be 

nearly the same at each mode’s resonant frequency, as shown 

in Fig.2. 

 
Fig. 2.The modal current distributions of CMs/XMs 

To further study how CMs resemble XMs in a quantitative 

way, it seems to be beneficial to use the correlation 

coefficient (CC) which is defined as 
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   (11) 

0 ( , ) 1corr CM XM

n n
I I                            (12) 

From (11), it can be seen that the CC is normalized 

implicitly and it does not depend on the magnitude of the 

modal current of CM or XM. Then the CCs of CMs and 

XMs are computed according to (11) and they are found all 

equal to 1 as exhibited in Table I. This fact means that the 

modal currents of CM and XM are really the same at every 

resonant frequency. It also tells us both CMs and XMs 

contain the resonant current information of the dipole. 

TABLE I 
Correlation Coefficients of CMs and XMs 

CM,XM 
1 1,CM XM

I I  
2 2,CM XM

I I  
3 3,CM XM

I I  
4 4,CM XM

I I  

FRE 1.4GHz 2.9GHz 4.4GHz 5.9GHz 

CORR 1 1 1 1 

Now we can discuss the different effects of R and X
operators. Looking back Fig.1, we see that although without 

using R operator at all, XMs still carry the dipole’s resonant 

information as CMs do. The reasonable explanation is that 

only the X operator contains the dipole resonant information. 

But this doesn’t deny the significance of R operator for an 

antenna. In fact, its functions are required further study. 

It should be noted although we only consider the first four 

CMs and XMs in the above analysis for brevity, the relations 

between higher order CMs and XMs and the discussions 

above still remain to be true. 

4. Conclusion 

In order to distinguish the different contributions of R and 

X operator to antennas, the XMs have been proposed. By 

comparing XMs with the conventional CMs, it has been 

found that both these two types of modes carry the same 

resonant information, including resonant frequency and 

resonant current of antennas. We have drawn a conclusion 

that the resonant information of an antenna only exists in the 

reactance operator but remain the resistance operator to be 

further studied in future.  
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