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1. Introduction
We proposed electric field integral equations (EFIE) which are suitable for a basis theory of a com-

puter aided design (CAD) of a 3-dimensional (3D) single-mode waveguide [1]. In the EFIE, we deter-
mined the transmission and reflection coefficients by using the asymptotic expression of Green’s func-
tion. The EFIE can be numerically solved by the standard method of moment (MoM) directly. However,
it is difficult to extend the EFIE method to multimode waveguide.

In this paper, we propose new EFIE which can extend to 3D multimode waveguide. In the new
EFIE, we determine the transmission and reflection coefficients by using the orthogonal properties of the
modes. In this paper, we consider a 3D single-mode waveguide, in order to simplify the formulation.
But it is straightforward to extend the EFIE for a 3D single-mode waveguide to that for a 3D multimode
waveguide. Numerical results are finally shown.

2. Waveguide Model
In this paper, we consider a 3D single-mode waveguide as shown in Fig. 1(a). The two multimode

waveguides 1 and 2 (regions Ω1 and Ω2), whose cross-sections are rectangle a × b, are connected by the
junction (region Ω0), where the junction is an arbitrary shape, even though the junction is an iris in Fig.
1(a). The incident wave comes from the waveguide 2.

Let S 0, S 1 and S 2 denote the side surface of the junction, the waveguide 1 and the waveguide 2,
respectively. Note that S0 has finite in extent, and S1 and S 2 have infinite in extent. Surfaces S10 and
S 20 denote the virtual surface between the junction and the waveguide 1, and between the junction and
the waveguide 2, respectively. Surfaces Γ10 and Γ20 also denote virtual surfaces, which are cross-section
surfaces within the junction S0 + S 10 + S 20.

3. New EFIE
For the waveguide as shown in Fig. 1(a), we obtain an EFIE

E(r) =
∫

S

{
jωμJ(r′)G(r|r′) − j

ωε

[∇′ · J(r′)
]∇′G(r|r′)

}
dS ′ (1)

where

G(r|r′) = 1
4π

exp(− jkn|r − r′|)
|r − r′| (2)

J(r′) = n̂× H(r′) (3)

and n̂ denotes the unit normal vector to surface.
In order to derive a new EFIE, we first decompose the total field to guided fields and unguided fields

in the waveguides 1 and 2. Namely, the total field E(r) and H(r) in the waveguide 1 are decomposed as

E(r) = T10Et
10(r) + EC(r) (4)

H(r) = T10Ht
10(r) + HC(r) (5)
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and those in the waveguide 2 as

E(r) = R10Er
10(r) + Ei(r) + EC(r) (6)

H(r) = R10Hr
10(r) + Hi(r) + HC(r) (7)

where T10 and R10 are transmission and reflection coefficients of TE10 mode, respectively. Et
10 and

Ht
10 are transmitted guided modes in the waveguide 1, Er

10 and Hr
10 are reflected guided modes in the

waveguide 2, and Ei and Hi are incident guided fields. EC and HC denotes unguided fields in the
waveguides 1 and 2, which are the sum of cutoff modes.

Substituting Eqs. (4)-(7) into Eq. (1), we obtain

E(r) (r in Ω0)
T10Et

10(r) + EC(r) (r in Ω1)
R10Er

10(r) + Ei(r) + EC(r) (r in Ω2)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
=

∫
S 0

{
jωμJG − j

ωε

[∇′ · J]∇′G} dS ′ +
∫

S 1+S 2

{
jωμJCG − j

ωε

[
∇′ · JC

]
∇′G
}

dS ′

+ T10

∫
S 1

{
jωμJ t

10G −
j
ωε

[
∇′ · J t

10

]
∇′G
}

dS ′ + R10

∫
S 2

{
jωμJr

10G −
j
ωε

[
∇′ · Jr

10

]
∇′G
}

dS ′

+

∫
S 2

{
jωμJ iG − j

ωε

[
∇′ · J i

]
∇′G
}

dS ′ (8)

where

J p
10(r) = n̂× Hp

10(r), p = t, r (9)

Jq(r) = n̂× Hq(r), q = i,C. (10)

The transmitted electric field Et
10, the reflected electric field Er

10 and the incident electric field Ei

satisfy

Et
10(r) (r in Ω1)
0 (r in Ω0,Ω2)

}
=

∫
S 1

{
jωμJ t

10G −
j
ωε

[
∇′ · J t

10

]
∇′G
}

dS ′ + Ut
10(r) (11)

Er
10(r) (r in Ω2)
0 (r in Ω0,Ω1)

}
=

∫
S 2

{
jωμJr

10G −
j
ωε

[
∇′ · Jr

10

]
∇′G
}

dS ′ + Ur
10(r) (12)

Ei(r) (r in Ω2)
0 (r in Ω0,Ω1)

}
=

∫
S 2

{
jωμJ iG − j

ωε

[
∇′ · J i

]
∇′G
}

dS ′ + Ui(r) (13)

where

Ut
10(r) =

∫
S 10

{
jωμJ t

10G −
j
ωε

[
∇′ · J t

10

]
∇′G + Mt

10 × ∇′G
}
dS ′ (14)

Ur
10(r) =

∫
S 20

{
jωμJr

10G −
j
ωε

[
∇′ · Jr

10

]
∇′G + Mr

10 × ∇′G
}
dS ′ (15)

Ui(r) =
∫

S 20

{
jωμJ iG − j

ωε

[
∇′ · J i

]
∇′G + Mi × ∇′G

}
dS ′ (16)

Mp
10(r) = Ep

10(r) × n̂, p = t, r (17)

Mq(r) = Eq(r) × n̂, q = i,C. (18)

Substituting Eqs. (11)-(13) into Eq. (8), we finally obtain

E(r) (r in Ω0)
EC(r) (r in Ω1,Ω2)

}
=

∫
S 0

{
jωμJG − j

ωε

[∇′ · J]∇′G} dS ′

+

∫
S 1+S 2

{
jωμJCG − j

ωε

[
∇′ · JC

]
∇′G
}

dS ′

− T10Ut
10(r) − R10Ur

10(r) − Ui(r). (19)
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The integral equation (19) is the one which we have proposed so far. The properties of Eq. (19) are
following: (i) Eq. (19) is the similar formula to Eq. (1); (ii) S1 and S 2 can be regarded as finite in extent,
because JC which is the sum of cutoff modes vanishes at the far point from the iris. According to the
properties, it is possible to apply the standard MoM to Eq. (19). However, Eq. (19) can not be solved,
because the unknowns are not only J and JC but also T10 and R10. Therefore, we need to obtain another
equations.

In order to derive another equations, we applied the asymptotic expression of Green’s function in
Ref. [1]. However, it is difficult to extend this procedure to multimode waveguides.

As a procedure which can be extent to multimode waveguides, we derive another equations applying
the orthogonal properties of the modes [2]. Multiplying Eq. (19) by the transmitted guided mode Et

10(r)
in the waveguide 1, and integrating the resultant equation on the cross-section surface Γ10 gives∫
Γ10

Et
10(r) · E(r)dS =

∫
Γ10

Et
10(r) ·

∫
S 0

{
jωμJG − j

ωε

[∇′ · J]∇′G} dS ′dS

+

∫
Γ10

Et
10(r) ·

∫
S 1+S 2

{
jωμJCG − j

ωε

[
∇′ · JC

]
∇′G
}

dS ′

− T10

∫
Γ10

Et
10(r) · Ut

10(r)dS − R10

∫
Γ10

Et
10(r) · Ur

10(r)dS −
∫
Γ10

Et
10(r) · Ui(r)dS .

(20)

Using the orthogonal properties of mode, the left-side hand of Eq. (20) becomes∫
Γ10

Et
10(r) · E(r)dS = T10

∫
Γ10

Et
10(r) · Et

10(r)dS . (21)

Similarly, multiplying Eq. (19) by the reflected guided mode Er
10(r) in the waveguide 2, and integrating

the resultant equation on Γ20 gives∫
Γ20

Er
10(r) · E(r)dS =

∫
Γ20

Er
10(r) ·

∫
S 0

{
jωμJG − j

ωε

[∇′ · J]∇′G} dS ′dS

+

∫
Γ20

Er
10(r) ·

∫
S 1+S 2

{
jωμJCG − j

ωε

[
∇′ · JC

]
∇′G
}

dS ′

− T10

∫
Γ20

Er
10(r) · Ut

10(r)dS − R10

∫
Γ20

Er
10(r) · Ur

10(r)dS −
∫
Γ20

Er
10(r) · Ui(r)dS

(22)

where ∫
Γ20

Er
10(r) · E(r)dS = R10

∫
Γ20

Er
10(r) · Er

10(r)dS . (23)

The equations (19), (20) and (22) are the new EFIE which we propose in this paper. Since S1 and
S 2 can be regarded as finite in extent, we can expand JC in finite number of basis functions. When we
apply the standard MoM to Eq. (19), (20) and (22) using N basis functions, we obtain a matrix equation,
where the size of a coefficient matrix is (N + 2) × (N + 2) and the size of an unknown vector is N + 2.
Namely, Eqs. (19), (20) and (22) can be numerically solved by the standard MoM with no use of mode
expansion technique.

4. Numerical Simulations
Figure 2 shows the transmission and reflection coefficients and transmitted and reflected energies.

The size of waveguide is a = 15.8mm and b = 7.9mm, and the size of iris is w = a/
√

2, h = b/
√

2 and
t = 2mm. The method #1 is the proposed method in this paper. The method #2 is the method proposed
in Ref. [1]. The results of #1 and #2 are compared with those in Ref. [3]. The results of #1 and #2 are
good agreement with those of Ref. [3] from Fig. 2(a). The total energies satisfy the energy conservation
law within an accuracy of 1% except a/λ = 0.6.
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5. Conclusions
We have proposed the new EFIE (19), (20) and (22) which are suitable for a basis theory of computer

aided design of a 3-dimensional waveguide. The new EFIE can be numerically solved by the standard
MoM with no use of mode expansion technique. It is straightforward to extend this procedure to a
multimode waveguide. We have also shown numerical calculations of the iris waveguide.
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Figure 1: (a) Iris waveguide model, and (b) parameters of iris.
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Figure 2: (a) Transmission coefficient (S12) and reflection coefficient (S22) of iris waveguide, and (b)
transmitted energy (ΓT), reflected energy (ΓR) and their total energy ΓTOTAL.
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