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Abstract–Two different solutions for the characteristic 

modes (CMs) of lossy structures were previously developed 
using induced volume currents. The first solution diagonalizes 
the scattering and perturbation matrices, guaranteeing far-
field orthogonality at the cost of imaginary eigenvalues and 
eigencurrents. The second solution does not perfectly 
diagonalize these matrices, but maintains real-valued 
eigenvalues and eigencurrents. When these matrices are non-
perfectly diagonalized the characteristic far-fields are no 
longer fully orthogonal to one another. However, the second 
formulation has not yet been investigated, and as such the 
effect of non-perfect diagonalization on the orthogonality of 
the far-field patterns is still unknown. For this reason, it is not 
clear if volume-based characteristic modes can be used for 
CM analysis (CMA) of lossy dielectric structures. This article 
evaluates the effect of different losses on the modal 
orthogonality of two dielectric resonant structures, and 
determines the practicality of using volume-based CMA. 

Index Terms — Antennas, Antenna Design, Characteristic 
Modes, VIE, Far-field Orthogonality. 

1. Introduction 

The Theory of Characteristic Modes (TCM) [1] provides 
in-depth physical insights into the fundamental radiation 
properties of any structure. The resonant characteristics of 
each mode are defined by a set of characteristic attributes 
that are derived from the inherent orthogonal currents a 
structure supports. These orthogonal currents are 
traditionally found through an eigenvalue decomposition of 
a symmetric method-of-moments (MoM) impedance matrix. 
Conventionally, the impedance matrix is obtained for an 
object made from perfect electric conductors (PEC), but it 
is possible to solve for realistic materials using a symmetric 
surface integral equation (SIE) [2] or a symmetric volume 
integral equation (VIE) [3]. The characteristic modes (CM) 
of a symmetric SIE impedance matrix have were derived in 
[2] and evaluated in [4], but there are still many open 
questions for both SIE and VIE CM formulations. In [3], it 
was shown that the CMs of a dielectric, magnetic, or 
mixed-material object can be found using the VIE 
formulation. This formulation has multiple problems [3]: 
the first is that the CMs cannot be related back to the stored 
energy of the structure; the second is that, when losses are 
added, the scattering and perturbation matrices are not 
perfectly diagonalized. 

In this article the problem associated with the non-perfect 
diagonalization of the VIE perturbation and scattering 
matrix is investigated. When an eigenvalue decomposition 

is used to define a set of orthogonal characteristic currents 
for a given lossy VIE impedance matrix, the far-fields as 
defined by those currents do not provide a perfectly 
orthogonal set of far-field patterns. The extent of this 
problem has never before been studied. In this article, two 
different dielectric resonant structures will be analyzed over 
six different losses, to determine the extent of the non-
orthogonality of modal the far-fields across different losses. 

2. Origin of non-orthogonal far-fields in VIE 

CMs are defined by the set of orthogonal currents which 
can be used to determine any current induced by a given 
incident electric field. This set of currents can theoretically 
be viewed as the scattered divergent electric field which is 
induced by a given incident field. When this theory is 
applied to volumetric currents the electric field must be 
represented as the sum of both an incident electric field (Ei) 
on a volumetric element, as well as the scattered fields from 
other volumetric elements (Es). It should be noted that this 
constitutive relationship, as defined by (1), is different than 
that defined by traditional SIE CM formulations [1].  

      2 1 1 2'' '' ' ' i sJ j E E           (1) 

In (1), J is the induced currents, ω is the angular 
frequency, 1 1 1' ''j     is the permittivity outside a given 
basis tetrahedral, and 2 2 2' ''j     is the permittivity of a 
basis tetrahedral. The real part of the permittivity is 
associated with the stored energy within the dielectric and 
the imaginary part of the permittivity and is associated to 
the energy lost within the dielectric. This equation can be 
expressed in terms of impedance operators Zv and Zm, as 
described by 

( ) s
vZ J E  , (2) 

and             1

2 1 1 2( ) '' '' ' 'mZ J j J     


    . (3) 

Hence, the induced current by a given incident field in 
the volume can be written as 

   i
v mZ Z J E  . (4) 

The modes which perfectly diagonalize the impedance 
and scattering matrices can be found using (5), or (6) with 
the common terms canceled [3].  

       1 Rev m n n v nZ Z J j Z J    (5) 

      Im Rev m n n v nZ jZ J Z J   (6) 
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However, this decomposition may result in complex 
eigenvalues (λn) and characteristic currents (Jn). In 
additional, the impedance matrix as found using the method 
described in [5] makes it difficult to split the full 
impedance matrix into the two individual impedance matrix 
operators Zv and Zm. For these two reasons, it is obvious 
that the related impedance matrices should remain a single 
matrix, and an eigenvalue decomposition of the resulting 
linked matrix could be used to determine the CMs of the 
full structure as is described by  

            Im Im Re Rev m n n v m nZ Z J Z Z J   . (7) 

The specific eigenvalue decomposition that is applied in 
(7) maintains mode-to-mode current orthogonality, but the 
scattering matrices are not diagonalized as shown by (64) in 
[3]. This causes the far-fields to become non-orthogonal by 
an amount equal to ,Re( )m m nJ Z J . As can be seen in (2), 
Re(Zm) is based solely on the loss of the structure and will 
increase at a rate related to the loss and the amount of 
current for any given tetrahedral basis function. As the 
matrices are not easily separable, the non-orthogonality 
relationships can instead be quantified by the envelope 
correlation coefficient (ECC) of the far-field patterns for 
any two modes [6]. 

3. Effect of loss on volume based characteristic modes 

To better understand the effect of loss on the far-field 
orthogonality of a structure, two different structures were 
analyzed over six different levels of losses. The first 
structure was a dielectric sphere with a radius of 150 cm, 
dielectric constant of εr = 10 and center frequency of 250 
MHz, with greater than 13,000 basis functions. The second 
structure was a dielectric cylinder with a radius of 135 cm, 
height of 300 cm, dielectric constant of εr = 10 and center 
frequency of 350 MHz, with greater than 18,000 basis 
functions. Both structures had at least one mode near 
resonance (|λn| < 0.5) at the center frequency. These 
structures were simulated over six different dielectric losses, 
with loss tangents tan δ = 0, 0.005, 0.01, 0.025, 0.05, and 
0.1. The first twelve CMs of each structure, for each loss 
level, were obtained and their electric far-field patterns 
were correlated with one another to obtain the ECC 
between all modes. The electric far-field patterns were 
calculated over a sphere at 250 meters for every 10° in both 
theta and phi. This final ECC calculation resulted in a 12 × 
12 correlation matrix, with each off-diagonal element 
representing how a given mode correlates to a different 
mode of the same structure, for a given level of loss.  

The highest ECC of a given mode with all other modes is 
shown in Fig. 1 for each of the two structures. In this figure, 
modes of different loss levels (of a given structure) are 
mapped to one another based on a weighted tracking 
function which utilizes the eigenvalue, far-field correlation, 
and current correlation. It is noted that the 2D plot only 
illustrates the maximum ECC between a given mode and all 
other modes, and it does not provide information regarding 

whether one mode is correlated to more than one other 
mode. These simulations show that for low loss structures, 
the correlation is small when evaluated for a limited 
number of modes (i.e., 12 in this case). All the 12 evaluated 
modes for each structure were found to fall in the range of 
|λn| < 1000.  

As the loss of the structure increases, the modal 
correlation increases significantly. However, no clear trend 
is observed between the two structures in the maximum 
ECC over different modes and loss levels. This is because 
the two structures have significantly different modes and 
mode mappings. The cylinder’s mode-to-mode correlation 
was found to be proportional to the square of the loss, 
whereas modes 2 and 12 of the sphere are fully correlated 
for all losses above tan δ = 0.025, and not correlated for all 
tan δ ≤ 0.01. Therefore, it can be seen that the correlation is 
dependent on the loss, the amount of current in any given 
region of the structure, and the specific shape of the 
structure. From this simple analysis, it can be concluded 
that if the CMs of lossy structures are computed using the 
VIE formulation, low losses (e.g., tan δ ≤ 0.01) are not 
expected to have a significant effect on the mode-to-mode 
correlation. However, the correlation should be evaluated 
for higher loss structures. 

 
Fig. 1. Highest ECC of volume-based characteristic modes. 

(Modes are skewed in the y-axis to help visualize each mode) 
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