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INTRODUCTION

Periodic structures such as active phased array antennas, gate arrays, frequency selective surfaces (FSS) and
Photonic Band Gap (PBG) crystals are of considerable interest for a wide range of communications and radar
applications.  Modelling of planar arrays of 3-D periodic elements represents a significant theoretical challenge,
particularly when non-linear devices form part of the system.  Methods employing a Floquet mode
representation and a Method of Moments (MoM) solution are widely available for planar structures, but these
cannot directly cater for planar arrays of arbitrary 3-D elements and material properties, without custom
modification to suit individual scenarios.  The Finite Difference Time Domain (FDTD) method is well suited to
modelling generalised 3-D structures and also non-linear devices.  This paper presents a modification to the
standard FDTD implementation, which significantly increases the utility of the method as a design and
optimisation tool.  It provides the ability to model infinite periodic antenna arrays or scatterers and in particular
the behaviour of elements on triangular lattices.  The theoretical foundation of these extensions is explained in
the early sections of this paper.  A code incorporating the new FDTD model has been developed and has already
proven to be of considerable practical benefit in the design of microwave and millimetre-wave structures.  A
series of examples are presented which illustrate its accuracy and flexibility for solving a wide range of complex
problems.  The capability to model arbitrary planar periodic structures has also been applied to assess and
compensate for effects imposed by manufacturing techniques, including the radii of cutters used to machine
waveguide aperture arrays.  In this sense the code has many real-life applications in the design of low cost
antennas, where it is desirable to circumvent the use of expensive manufacturing techniques, such as electronic
discharge machining (EDM), or to assess the impact of draft angles used in moulded or cast arrays.

FDTD offers a very flexible and therefore powerful tool for modelling infinite arrays and makes it possible to
directly obtain the broadband response of a given structure (using a pulse excitation), including incorporation of
non-linear media and devices.  To enable the FDTD technique to be applied to more realistic scenarios, and at
the same time obtain a rapid solution, periodic boundary conditions are introduced.  As with frequency domain
methods, it is only necessary to model a single array element by enforcing the periodicity of the fields.
However, special problems arise when time domain methods model phase shifted arrays or non-normal
incidence of plane waves using a single periodic cell, Tsay and Pozar [1].  In these cases, the field excitation is
generated at each array element at different time instants, Fig.1a.  In addition, in order to make the technique
applicable to a wider range of practical problems, it is desirable to introduce non-orthogonal periodic boundary
conditions, which enable triangular lattices to be simulated, Fig.1b.  For oblique plane wave incidence and phase
shifted arrays, this non-orthogonality must also extend to the time domain.  The meaning of the non-
orthogonality of the time axis can be explained using Special Relativity, as detailed in the following section.

In order to model these structures, the standard FDTD technique has been extended to a general 4-D space-time
non-orthogonal grid.  Doubly periodic structures, such as FSS, are very demanding in terms of the Absorbing
Boundary Conditions (ABCs), due to the propagation of grating lobes when illuminated at high incidence
angles.  As a consequence, the ABCs reduce the overall speed of the computations.  Promising new ABCs,
based on an analytical Discrete Green’s Functions (DGF), have therefore been implemented, [2].

The technique described here is a general approach to the problem, producing an extended FDTD method that
can treat phased shifted infinite planar arrays of 3-D elements with arbitrary pulsed excitation by modelling a
single array element.  The method is based on a true 4-D periodic representation of the fields in the time
domain.  For the phased array (or a dichroic surface) under non-normal incidence, the scattered field appears to
be periodic in a 4-D basis.  The FDTD technique is implemented solving Maxwell’s equations in an arbitrary
non-orthogonal 4-D basis.  A summary of the technique is given below, but was set out in more detail in a recent
paper, [3].
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Fig.1: (a) Field at a given periodic cell (depends on the scattering at adjacent cells on previous time instants),
(b) skewed lattice cell

ARBITRARY 4-D FDTD BASIS FOR INFINITE ARRAYS

The boundary condition assumes that the field solution and its derivatives can be obtained by a translation of the
field cell.  Thus, the fields outside the periodic cell, that are necessary to calculate the fields at the boundary, can
be estimated by the fields inside the cell using a translation (Eq.1). In order to apply this condition it is
necessary that the boundary of the region being modelled is the same as that forming the periodic cell.
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If the FDTD grid is maintained, a extrapolation procedure is required to predict the fields at future time instants.
This is possible for sinusoidal signals in steady state, since the estimation of the field at future time instants can
be obtained as a simple phase delay on the sinusoidal response.  However, in that case the periodic boundary
conditions for the FDTD method is restricted to monocromatic sources and linear media.  For the more general
case of pulse excitation, the problem of using periodic boundary conditions can be tackled using a change of
basis for the time co-ordinate to match the lattice in the real 4-D space.  In this way, the periodic boundary
condition can be applied directly in the new time co-ordinates, but Maxwell’s equations in the new basis have
extra terms that must be included in the FDTD algorithm, [3].   An alternative approach to avoid additional
terms in Maxwell’s equations can be implemented using the Lorentz transform (Eq.2), as detailed below.
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Maxwell equations are invariant to the Lorentz transform.  This means that the equations remain formally the
same after the transformation, without any additional term.  The theory of Special Relativity can be used to
understand the physical meaning of the method.  In his famous work published in the year 1905, Einstein [4] set
the background for modern physical theories, stating two postulates which are the basis of the theory of Special
Relativity: the first regarding the covariant form of laws of physics and the second which refers to the fact that
the speed of light is constant for all observers situated in an inertial reference frame.  To give form to these two
ideas, the concept of space-time was born, together with the use of the Lorentz transformations of four-
dimensional vectors ensuring the validity of the second postulate.

Using the Lorentz transform, the frame of reference corresponds to a relativistic observer.  For this observer,
physical laws (including Maxwell equations) remain unchanged, but the perception of an outside static observer
can be rather different.  Non simultaneous events (radiation from phase shifted array elements) in the frame of
reference can appear to be simultaneous for the moving observer.  However, the Lorentz transformation
approach requires that the structure is moving with respect to the FDTD grid, resulting in practical problems in
the implementation of the numerical algorithm.  This can be overcome for a phase shifted array or (FSS at
oblique incidence) by transforming the problem into a ‘constant phase’ array or an FSS at normal incidence.
This introduces a transformation of Maxwell’s equations into the new set given in (3) below, [3].
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 should be taken as the contravariant co-ordinates, ∇ the covariant co-ordinates of the
lattice basis and the vector α  = ν / c2.

These modified Maxwell’s equations conform to their usual from for 0=α�  (normal incidence).  The structure
of the equations is similar to Maxwell’s equations for the new field functions (Eh, He).  The algorithm stability is
critical when α/c is close to one.  This happens for angles of incidence close to 90° to the normal ( =α� c), where
there is a singularity in the Lorentz transform.  This is equivalent in Einstein’s theory of Special Relativity to an
object approaching the speed of light.  It is interesting to postulate the equivalence between evanescent and
surface wave phenomena observed in the antenna problem and the paradox encountered by Einstein, consistent
with this method, of an object moving faster than the speed of speed light, as seen by a static observer.

PRACTICAL APPLICATIONS

A computer code has been implemented in order to demonstrate the 4-D FDTD method.  Perfect Matched Layer
(PML) boundary conditions have been implemented in this 4-D basis, the field splitting being performed in Eh

and He according to the relations of Eq.3, relating these to the physical fields E and H.  This software calculates
the transmission coefficient of a plane wave on a variety of structures, including FSS, PBGs and corrugated
scatterers, as well as impedance and radiation pattern characteristics of phased array antennas, including
triangular lattices.  For analysis of FSS, the code simulates the incidence of a plane wave Gaussian pulse and
outputs the broadband transmission and reflection of the 0th order Floquet mode at the given angle of incidence.
The grating lobe response can also be extracted by considering the higher order propagating modes.

Figures 2 compares the transmission characteristics of an FSS structure modelled using the 4-D FDTD method
with resulted presented by Zarrillo and Aguiar [5] produced using a mode-matching technique (MM).  This
analysis used a 60x21x21 grid, with 16 layers PML ABCs and took 6 minutes CPU time on a 450MHz Pentium.

Fig 2: TE and TM transmission through a screen of square holes (30° incidence)

A Photonic Band Gap crystal was also modelled by way of a demonstration.  Such structures have received
considerable attention in the literature and offer considerable potential to suppress surface waves in printed
antenna substrates.  One well-known structure is the so-called wood-pile.  Ho et al [6] have modelled this
configuration using a MoM approach; Fig.3a,b compares this solution with the ERA 4-D FDTD result.

Fig 3: Predicted performance of Photonic Band Gap wood-pile structure at
(a) 0° incidence, (b) 30° incidence, (c) geometry

A complex FSS comprising electrically thick and thin FSS on different periodic (but harmonically related)
lattices was also modelled.  This structure was designed to produce pass-bands at L and S band, with a reflection
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band at 8 GHz, as shown in Fig.4.  The code was applied to model this structure without need for modification.

Fig.4: Multilayer FSS comprising electrically thick screen with apertures, plus separate printed array

Work is also ongoing into modelling active structures.  An example of such a structure is shown schematically
in Figure 5.  Here crossed dipoles are connected by diodes to form a conducting, and hence reflecting, mesh
when the diodes are forward biased and a narrow-band reflection resonance when under reverse bias conditions.
Other non-linear devices can be modelled in this configuration to provide quasi-optical down-conversion, or to
act as a frequency doubler, for example in millimetre-wave applications.  The 4-D FDTD code is also being
used in the design of fixed beam and phased scanned antennas on triangular array lattices.

Fig.5: Active mesh grid array.

CONCLUSIONS

This paper has described the fundamental framework of the 4-D FDTD method and has illustrated the
application of the method to periodic arrays with skewed lattices.  The generalisations detailed in this paper
should enable realistic structures to be modelled, including active elements, provided that representative data is
available on the time varying behaviour of these components.  It also opens up the possibility of accurately
modelling a broader range of structures, including Photonic Band Gap (PBG) materials.  Crucial to this is the
flexibility of the technique to analyse the wideband behaviour of infinite planar arrays of arbitrary 3-D elements,
without recourse to modification of the code to accommodate individual geometries.  In addition, the 4-D FDTD
reduces the memory and computational requirements by modelling only a single periodic cell, making it feasible
to simulate and optimise realistic configurations, including features introduced by manufacturing processes.

As Einstein showed it is sometimes necessary to stand outside your own paradigm to solve a problem.  By using
the Lorentz transform it could be said that the techniques described in this paper are not new, but nevertheless
their novel application may have a considerable impact on the utility of the FDTD method.  Parallels with the
speed of light paradox also provide an interesting new perspective on evanescent and surface wave phenomena.
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