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Abstract: The characteristics of radar cross section
(RCS) of partially convex targets with large sizes up
to five wavelengths in free space and random media
are studied in this work. The nature of incident wave
is an important factor in the remote sensing and radar
detection applications. Here I investigate the effects
of a beam wave incidence on the performance of RCS
as I have handled the plane wave incidence case in a
previous study. Targets are taking large sizes to be
bigger enough than the beam width with putting into
consideration a horizontal incident wave polarization
(E-wave incidence). The effects of the target config-
uration, random medium parameters, and the beam
width on the laser RCS and the enhancement in the
radar cross-section (ERCS) are numerically analyzed.
Therefore, we will be able to have some sort of control
on radar detection using beam wave incidence.

1 Introduction

A number of methods proposed to formulate the scat-
tering wave were presented: examples are in [1]–[3]. In
this regard, some years ago, a method has been pre-
sented for solving the scattering problem as a bound-
ary value problem [4]–[8]. This method is character-
ized by the estimation of the current on the whole
surface and not only on the illumination region as in
the physical optics method. Therefore this method
gives a precious calculation of the wave intensity.

Studying the backscattering enhancement imple-
mented in ERCS of electromagnetic waves propagat-
ing in random media has attracted researchers in the
fields of radar engineering and remote sensing as in
[9]–[12]. As a result of the double passage effect on
waves backscattered from point targets, RCS in ran-
dom medium is enhanced to be twice that one in free
space. As the more practical models, numerical re-
sults have been shown for RCS of conducting convex
bodies such as circular and elliptic cylinders [4]. Later,
the effects of target configuration, random media, and

polarization on the RCS and ERCS for plane wave
incidence were analyzed in many of my publications
(e.g. [5]–[8], where other references are available). It
was found that these parameters have an obvious in-
fluence on the RCS in addition to the double passage
effect.

In electromagnetic wave propagation and scatter-
ing, the effects of incident wave become significant,
depending upon its nature and polarization. It should
be noted that for generating waves of infinitely large
plane wave fronts, an infinitely large source should
be used. This can not be available easily especially
for plane waves wide sufficiently at the fronts of large
size targets in the far field. In an attempt to generate
plane wave, an expansion of plane wave into Gaussian
beam waves was derived [13]. Gaussian beams play a
key role in different fields of physics; let us mention ap-
plications in lasers, electromagnetic waves, etc. Many
problems of propagation and scattering of Gaussian
beams have been solved (see [7, 14, 15], where other
references can be found). On the other hand, the re-
search on laser radar [16] for target ranging, detection,
and recognition [17] has become the one key technol-
ogy to evaluate and model the characteristics of scat-
tering from a complex target in the military and civil
applications.

In this paper, the scattering characteristics are an-
alyzed through studying the behavior of laser RCS
(LRCS) of a complex target. In doing that, one can
calculate the LRCS by assuming a beam wave incident
on a nonconvex cross section. In fact, we can consider
the beam wave as a plane wave when the mean size of
the scatterer becomes smaller than the beam width,
however, this is not usually the general case practi-
cally. To detect targets of larger sizes, we should,
therefore, handle the case where the beam width is
smaller than the target size.

In this study I consider the scattering problems
where beam wave incidence is backscattered from tar-
gets in free space and continuous random media of dif-
ferent strengths. Effects evaluation of the target con-
figuration including size and curvature on the LRCS
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and the enhancement phenomenon in LRCS (ELRCS)
is investigated. To achieve this aim, we draw on our
method described earlier to conduct numerical results
for the LRCS of concave-convex targets of large sizes
up to about five wavelengths to be bigger enough than
the beam width. We deal with the scattering prob-
lem two-dimensionally assuming horizontal polariza-
tion (E-wave incidence). In the previous work [5],
it has been clarified that the RCS changes obviously
with the illumination region curvature. In this study,
it is concentrated on the wave backscattering from
convex illumination portion only. The time factor
exp(-iwt) is assumed and suppressed in the following
section.

2 Formulation

Geometry of the problem is shown in Figure 1. A
random medium is assumed as a sphere of radius L
around a target of the mean size a � L, and also to be
described by the dielectric constant ε(r), the magnetic
permeability µ, and the electric conductivity ν. For
simplicity ε(r) is expressed as

ε(r) = ε0[1 + δε(r)] (1)

where ε0 is assumed to be constant and equal to free
space permittivity and δε(r) is a random function with

〈δε(r)〉 = 0, 〈δε(r) δε(r′)〉 = B(r, r′) (2)

and
B(r, r) � 1, kl(r) � 1 (3)

Here, the angular brackets denote the ensemble aver-
age and B(r, r), l(r) are the local intensity and local
scale-size of the random medium fluctuation, respec-
tively, and k = ω

√
ε0µ0 is the wavenumber in free

space. Also µ and ν are assumed to be constants;
µ = µ0, ν = 0. For practical turbulent media the
condition (3) may be satisfied. Therefore, we can as-
sume the forward scattering approximation and the
scalar approximation [18]. Consider the case where
a directly incident beam wave is produced by a line
source f(r′) along the y axis. Here, let us designate
the incident wave by uin(r), the scattered wave by
us(r), and the total wave by u(r) = uin(r) + us(r).
The target is assumed to be a conducting cylinder of
which cross-section is expressed by

r = a[1 − δ cos 3(θ − φ)] (4)

where φ is the rotation index and δ is the concav-
ity index. We can deal with this scattering problem
two dimensionally under the condition (3); therefore,
we represent r as r = (x, z). Assuming a horizontal
polarization of incident waves (E-wave incidence), we
can impose the Dirichlet boundary condition for wave
field u(r) on the cylinder surface S. That is, u(r) = 0,
where u(r) represents Ey.
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Figure 1: Geometry of the problem of wave scattering
from a conducting cylinder in a random medium.

Using the current generator YE and Green’s func-
tion in random medium G(r | r′), we can express the
scattered wave as

us(r) =
∫

S
dr1

∫
S

dr2 [G(r | r2)YE(r2 | r1)uin(r1 | rt)]

(5)
where rt represents the source point location and it
is assumed as rt = (0, z) in section 3. We consider
uin(r1 | rt), whose dimension coefficient is under-
stood, to be represented as:

uin(r1 | rt) = G(r1 | rt) exp[−(
kx1

kW
)2] (6)

where W is the beam width. The beam expression is
approximately useful only around the cylinder. Here,
YE is the operator that transforms incident waves into
surface currents on S and depends only on the scatter-
ing body. The current generator can be expressed in
terms of wave functions that satisfy Helmholtz equa-
tion and the radiation condition. More details about
YE are available in [4]–[8].

Therefore, the average intensity of backscattering
wave for E-wave incidence is given by

〈|use(r)|2〉 =
∫

S
dr01

∫
S

dr02

∫
S

dr′1
∫

S
dr′2

YE(r01 | r′1)Y ∗
E(r02 | r′2)

〈G(r | r01)G(r | r02)G∗(r | r′1)G∗(r | r′2)〉 (7)
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We can obtain the LRCS σ using equation (7)

σ = 〈|us(r)|2〉 · k(4πz)2 (8)

3 Numerical Results

In the following, we conduct numerical results for
LRCS and normalized LRCS (NLRCS), defined as the
ratio of LRCS in random media σ to LRCS in free
space σ0.

3.1 Radar cross-section RCS

First, we discuss, the numerical results for LRCS
shown in figures 2 and 3. Obviously and as well known
that for bigger kW, LRCS becomes closer to RCS in
case of plane wave incidence that was shown in [6]
owing to the extension of effective illumination region
(EIR). Also, we observe that when δ decreases, the
LRCS oscillates more largely in descending manner.
The vast oscillations in LRCS can be explained as fol-
lows: with increasing δ, there is increase in the num-
ber of nonspecular points in the vicinity of convex-
to-concave inflection points and these points are lo-
cated in the shadow region on the scatterer surface.
The contributions from these points, in addition to
the specular reflections from the illuminated portion,
progress in opposite directions and be out of phase
so they cancel out and therefore the fluctuations de-
crease with δ. However, with small δ, the number
of inflection points reduces and the scattering waves
become sometimes in phase so they add up and some-
times out of phase so they cancel out depending on
the scattering rays directions and that leads to such
large oscillated behavior. This analysis agrees with a
previous investigation dealing with scattering returns
from illuminated and shadow portions of smooth tar-
gets with inflection points [21, 22]. The descending
behavior is attributed to the EIRb gradual shrink with
ka, which in turn reduces the contribution to the scat-
tered waves.

As kW increases as the shadow region gets smaller
which accordingly reduces the number of nonspecu-
lar points and their effects as well and therefore the
peak-to-peak fluctuations band be narrower as shown
in figure 2. For random medium case, we notice that
as the SCL increases, the behavior of LRCS in random
media becomes closer to its behavior in free space ex-
cept for the magnitude of LRCS. The demonstration
of SCL impact on the LRCS will be analyzed in more
details when discuss the ELRCS shortly in the next
section.

As getting ka larger than kW, the LRCS decreases
as a result of the shortage in the surface current and
that leads to the gradual decrease in the scattered
wave contribution with ka. In contrast, RCS with
plane wave incidence is invariant with ka because the
generated surface current does not alter since the tar-
get’s front region facing the incident wave is always
illuminated and covered by the plane wave.

 0

 1

 2

 3

 4

 0  5  10  15  20  25  30

  s
/(2

a)

ka

kw = 1.5
= 4.8

(a)

 0

 1

 2

 3

 4

 0  5  10  15  20  25  30

kw = 1.5
= 4.8

  s
/(2

a)

ka

(b)

 0

 1

 2

 3

 4

 0  5  10  15  20  25  30
ka

kw = 1.5
= 4.8

  s
/(2

a)

(c)

Figure 2: LRCS vs. target size in free space where (a)
δ = 0, (b) δ = 0.1, (c) δ = 0.2.
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Figure 3: LRCS vs. target size in free space and at
three different SCLs for kW=2 where (a) δ = 0, (b)
δ = 0.1, (c) δ = 0.2.

3.2 Backscattering enhancement

We consider next the NLRCS to manifest the ELRCS
in random media compared to free space propagation
and hence we present numerical results for NLRCS in
figure 4 where kW = 2.

For ka � SCL, the NLRCS equals two, due to the
double passage effect, and this value of NLRCS is re-
alized, independent of illumination portion curvature,
i.e., independent of the concavity index δ. In this
range, beam wave seems as if it is a plane wave for
the small ka.

For ka � SCL, the NLRCS changes remarkably
and irregularly deviating away from two as a result of
the inflection points effect discussed above that influ-
ences LRCS differently in both cases of free space and
random medium trajectories. Inflection points may
locate inside kW, however, they locate outside SCL
depending on ka. In this case, contributions from
inflection points in free space are coherent, but on
the contrary they are incoherent in random medium
and that makes such difference in the impact of these
points and that is clear when SCL = 3 while 2kW = 4
in figure 4. As δ increases, as number of inflection
points increases as previously mentioned and that in
turn magnify the incoherent contributions. Therefore
the difference in RCS between free space and random
medium becomes bigger leading to larger fluctuations
in NLRCS. On the other hand when SCL > 2kW ,
the impact of inflection points in random medium be-
comes similar to that one in free space and, therefore,
the deviation of NRCS from two is not that massy
and does not change much with δ.

For ka > SCL, NLRCS oscillates regularly in sinu-
soidal behavior owing to the random medium effect,
with frequency approximately equals π/2 in almost
same manner irrespective of δ as the case with plane
wave incidence [6]. The oscillated behavior with plane
wave has waning amplitude with ka approaching to
certain values. However and as shown in figure 5, the
NLRCS dwindles with ka monotonically while oscil-
lating. When ka � kW , NLRCS would diminish with
large enough target and the beam wave becomes in-
capable of target detection.

One can behold that when SCL < 2kW , not all
EIR is used which makes NLRCS is quite far from
that one when SCL > 2kW (in figure 4, compare the
case of NLRCS when SCL = 3 and that ones at SCL
= 5.2, 7.5). Similarly, we can understand that if we
set SCL = 2kW = 4 in figure 4, NLRCS behavior
will be improved in the sense of lessening the strength
of oscillations and be closer to two. On the other
hand, when we let 2kW = 3 for SCL = 3 as shown
in figure 6, NLRCS rises up closing to 2, however,
the peak-to-peak oscillations get extended more than
the case with 2kW = 4. Therefore, to reduce the
strength of the fluctuations in NLRCS, the condition
SCL ≥ 2kW should be realized. This relation proves
that EIR of targets in random media depends on SCL
apart from the nature of incident wave. In addition
to the previous condition, SCL and accordingly kW
should have wider sizes to have NLRCS closer to 2.

4 International Symposium on Antennas and Propagation — ISAP 2006



4 Conclusion

The characteristics of RCS of smooth targets with in-
flection points are influenced by a way that can be
correlated with the contributions from the vicinity of
convex-to-concave transitions on the scatterer surface
in addition to the effective illumination region. These
features are more obvious with beam wave incidence
case compared to the plane wave incidence problem
that was shown in a previous study [6]. Numerical re-
sults show that laser RCS (LRCS) suffers from oscil-
lated behavior in random medium in a similar way to
the case with plane wave incidence. However, LRCS
diminishes with large enough target and the beam
wave becomes incapable of target detection. To have a
control over the backscattering enhancement, double
passage should be the only effect that can be existed.
To reach this objective, the fluctuations strength in
the backscattering waves in random medium can be
reduced by having SCL larger than or at least equals
to the beam size. Moreover, SCL and accordingly the
beam size should have wider sizes to have the enhance-
ment in LRCS closer to two. This conclusion is valid
irrespective of target configuration.
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Figure 4: Normalized LRCS vs. target size at different
δ for kW=2 where (a) δ = 0, (b) δ = 0.1, (c) δ =
0.2 and σ, σ0 are LRCS in random media and in free
space, respectively.
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