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1. Introduction
Recently there have been growing interests in the study and fabrication of chains of metallic nano-

particles namely plasmonic waveguides as subwavelength guiding structures due to the existence of
highly localised surface plasmons [1]. In this context, the finite-difference time-domain (FDTD) method
[2] is seen as the most popular numerical technique in the study of these structures especially because of
its flexibility in handling material dispersion as well as arbitrary shaped inclusions. However unless using
extremely fine meshes, due to the nature of orthogonal and staggered grid of conventional FDTD, often
modifications need to be applied in order to improve the accuracy of modelling, such as the treatment
of interfaces between different materials even for planar structures [3], and the improved conformal
algorithms using structured meshes [4] for curved surfaces.

In addition to the modifications at material interfaces, the material frequency dispersion has also to
be taken into account in FDTD modelling [5]. However, modelling dispersive materials with curved sur-
faces still remains to be a challenging topic due to the complexity in algorithm as well as the introduction
of numerical instability. An alternative way to solve this problem is based on the idea of effective per-
mittivities (EPs) [6] in the underlying Cartesian coordinate system, and the dispersive FDTD scheme can
be therefore modified accordingly without affecting the stability of algorithm. In this paper, we propose
a novel conformal dispersive FDTD algorithm combining the EPs together with an auxiliary differential
equation (ADE) method [2]. Numerical FDTD simulation results are verified by a frequency domain
embedding method [7].

2. Conformal Dispersive FDTD Method using Effective Permittivity
There are many types of EPs in literature [6, 8, 9], in this paper, we have chosen the most recently

reported one [9] to develop the conformal dispersive FDTD method. The conformal dispersive FDTD
method using other EPs can be developed in a similar manner. According to [9], the EP in a general form
is given by

εeff = ε‖(1 − n2) + ε⊥n2, (1)

where n is the projection of the unit normal vector n along the field component as shown in Fig. 1(a), ε‖
and ε⊥ are parallel and perpendicular permittivities to the material interface, respectively and defined as

ε‖ = f ε2 + (1 − f )ε1, ε⊥ = [ f /ε2 + (1 − f )/ε1]−1, (2)

where f is the filling ratio of material ε2 in a certain FDTD cell. Figure 1(b)(top) shows an example
layout of an infinite-long cylinder in the free space represented using staircase approximations in a two-
dimensional (2-D) orthogonal FDTD domain. The approximated shape introduces spurious numerical
resonant modes which do not exist in actual structures. On the other hand, using the concept of filling
ratio, the curvature can be properly represented in FDTD domain as shown in Fig. 1(b)(bottom), where
different levels of darkness indicate different filling ratios of material ε2. The accuracy of modelling can
be significantly improved compared with staircase approximations, as will be shown in a later section.
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Fig. 1. (a) Layout of a quarter circular inclusion in orthogonal FDTD grid for Ey component for an example of
the radius of inclusion is three FDTD cells. (b) Comparison of the filling ratio for Ey component using staircase
approximations (top) and the conformal scheme (bottom). The radius of circular cylinder is five cells. (c) Two-
dimensional (2-D) FDTD simulation domain for calculation of dispersion diagram.

In this paper we consider silver cylinders as the inclusions, which at optical frequencies can be
modelled using the Drude dispersion model

ε2 = 1 − ω2
p

ω2 − jωγ
, (3)

where ωp is the plasma frequency and γ is the collision frequency. In this paper, we assume that the
silver cylinders are embedded in the free space (ε1 = 1). Substitute (2) into (1) and apply inverse Fourier
transformation i.e. jω → ∂/∂t, after simple calculations we obtain the constitutive relation in the time
domain as

∂4D
∂t4 + 2γ

∂3D
∂t3 + [γ2 + (1 − f )ω2

p]
∂2D
∂t2 + γ(1 − f )ω2

p
∂D
∂t

=
∂4E
∂t4 + 2γ

∂3E
∂t3 + (γ2 + ω2

p)
∂2E
∂t2 + γω2

p
∂E
∂t

+ f (1 − f )(1 − n2)ω4
pE. (4)

Following standard discretisation procedure using central finite difference approximations [2], the updat-
ing equation for E in FDTD iterations is obtained as

En+1 = a−1
0 [b0Dn+1 + b1Dn + b2Dn−1 + b3Dn−2 + b4Dn−3 − (a1En + a2En−1 + a3En−2 + a4En−3)], (5)

with the coefficients given by

a0 =
1
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γ

(∆t)3 +
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p
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γω2

p
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+
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,
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The computations of H and D are performed using Yee’s standard updating equations in the free space.

3. Numerical Tests
In our simulations, we have used the developed conformal dispersive FDTD method to calculate

the dispersion diagram for one-dimensional (1-D) plasmonic waveguide formed by an array of periodic
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circular infinite-long (along z-direction) silver cylinders. As shown in Fig. 1(c), the 2-D simulation
domain with TE polarisation is truncated using Bloch’s periodic boundary conditions (PBCs) [10] in
x-direction and Berenger’s perfectly matched layers (PMLs) [11] along y-direction. The radius of silver
cylinders is r = 2.5×10−8 m and the period is a = 7.5×10−8 m. The plasma and collision frequencies are
ωp = 9.39×1015 rad/s and γ = 3.14×1013 Hz, respectively. The FDTD cell size is ∆x = ∆y = 2.5×10−9 m
with the time step ∆t = ∆x/

√
2c s according to the Courant stability criterion [2]. A wideband magnetic

line source is placed at a random location in the free space region of the 2-D simulation domain in order
to excite all resonant modes of the structure. The magnetic fields at one hundred random locations in the
free space region are recorded during simulations, transformed into the frequency domain and combined
to extract individual resonant mode corresponding to each local maximum. For each wave vector, a total
number of 20,000 time steps are used in our simulations to obtain enough accurate frequency domain
results.

In order to demonstrate the advantage of the EP in dispersive FDTD calculations, we have also
performed simulations using staircase approximations for the circular cylinder. Figure 2(a) shows the
comparison of the first resonant mode (transverse mode) of the plasmonic waveguide calculated using
different methods. With the same FDTD spatial resolution, the model using EP shows excellent agree-
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Fig. 2. (a) Comparison of the first resonant frequency (transverse mode) at wave vector kx = π/a calculated
using the FDTD method with staircase approximations, the FDTD method with EPs and the frequency domain
embedding method. (b) Comparison of dispersion diagrams calculated using the FDTD method with EPs and the
frequency domain embedding method.

ment with the results from the frequency domain embedding method [7], on the contrary, the staircase
approximation not only leads to a shift of the main resonant frequency, but also introduces a spurious
numerical resonant mode which does not exist in actual structures. The same effect has also been found
for non-dispersive dielectric cylinders [12]. It is also shown in Fig. 2(a) that although one may correct
the main resonant frequency using finer meshes, the spurious resonant mode still remains.

The problem of frequency shift and spurious modes become severer when calculating higher guided
modes near the ‘flat band’ region (i.e the region where waves travel at a very low phase velocity). Even
with refined spatial resolution, the staircase approximation fails to provide correct results (not shown).
On the other hand, using the proposed conformal dispersive FDTD scheme, all resonant modes are
correctly captured in FDTD simulations as demonstrated by the comparison with the embedding method
as shown in Fig. 2(b).

For demonstration of field symmetries and due to the TE mode considered in our simulations, we
have plotted the distributions of magnetic field corresponding to different resonant modes at wave number
kx = π/a as marked in Fig. 2(b), as shown in Fig. 3. Sinusoidal sources for excitation of certain single
mode are used and the sources are placed at different locations corresponding to different symmetries of
field patterns. All field patterns are plotted after the steady state is reached in simulations. The modes
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Fig. 3. Normalised distributions of magnetic field corresponding to different resonant modes at wave number
kx = π/a as marked in Fig. 2(b): (a), (c) - even modes and (b), (d) - odd modes.

(a), (c) in Fig. 3 are even modes and (b), (d) are considered as odd modes.

4. Conclusions
We have developed a conformal auxiliary differential equation based dispersive FDTD method using

effective permittivities. The calculation of dispersion diagram for plasmonic waveguide formed by an
array of silver cylinders is used to validate the proposed algorithm. The comparison with staircase
approximations clearly demonstrates the advantage in the accuracy of proposed method for modelling of
curved nano-plasmonic structures.

References
[1] S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. G. Requicha, “Local detection

of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,”
Nature Materials, vol. 2, pp. 229, 2003.

[2] A. Taflove, Computational Electrodynamics: The Finite Difference Time Domain Method, 2nd ed., Norwood,
MA: Artech House, 2000.

[3] K.-P. Hwang, and A. C. Cangellaris, “Effective permittivities for second-order accurate FDTD equations at
dielectric interfaces,” IEEE Microwave Wirel. Compon. Lett., vol. 11, pp. 158-160, 2001.

[4] Y. Hao, and C. J. Railton, “Analyzing electromagnetic structures with curved boundaries on Cartesian FDTD
meshes,” IEEE Trans. Microwave Theory Tech., vol. 46, pp. 82-88, Jan. 1998.

[5] Y. Zhao, P. Belov, and Y. Hao, “Modelling of wave propagation in wire media using spatially dispersive
finite-difference time-domain method: numerical aspects,” accepted, IEEE Trans. Antennas Propagat., 2006.

[6] N. Kaneda, B. Houshmand, and T. Itoh, “FDTD analysis of dielectric resonators with curved surfaces,” IEEE
Trans. Microwave Theory Tech., vol. 45, pp. 1645-1649, Sep. 1997.

[7] J. E. Inglesfield, “A method of embedding,” J. Phys. C: Solid State Phys., vol. 14, pp. 3795-3806, 1981.

[8] J.-Y Lee and N.-H Myung, “Locally tensor conformal FDTD method for modeling arbitrary dielectric sur-
faces,” Microw. Opt. Tech. Lett., vol. 23, pp. 245-249, Nov. 1999.

[9] A. Mohammadi, and M. Agio, “Contour-path effective permittivities for the two-dimensional finite-
difference time-domain method,” Opt. Express, vol. 13, pp. 10367-10381, 2005.

[10] C. T. Chan, Q. L. Yu, and K. M. Ho, “Order-N spectral method for electromagnetic waves,” Phys. Rev. B,
vol. 51, pp. 16635-16642, 1995.

[11] J. R. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Computat. Phys.,
vol. 114, pp. 185-200, Oct. 1994.

[12] W. Song, Y. Hao, and C. Parini, “Comparison of nonorthogonal and Yee’s FDTD schemes in modelling
photonic crystals,” submitted to Opt. Express, 2006.

527




