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1 Introduction
Many array signal processing techniques have been proposed for application in not only mobile commu-
nication systems but also intelligent transport systems[1]. Particularly, much attention is now focused on
adaptive and signal processing antenna arrays operating in the spatial domain[2]. In general, mobile ra-
dio propagation is characterized by strong multipath effects, so multipath fading deteriorates the quality
of digital communications. In order to understand the multipath wave propagation structures, it is most
effective to estimate the signal parameters (DOA and TOA etc.) of the individual incoming waves. Fur-
ther, utilizing the estimated information, we can form easily optimum beam patterns of antenna arrays
in the mobile radio environments.

Recently, the ESPRIT algorithm receives our great interest because of its high resolution and high
computational efficiency in estimating the signal parameters[3][4]. However, the conventional ESPRIT
algorithm is not devised essentially for the real-time and on-line signal processing. Besides, in pairing
the multiple signal parameters obtained from the multi-dimensional ESPRIT[5], we have to rely on
somewhat complicated schemes such as the simultaneous Schur decomposition (SSD)[5].

In this paper, therefore, we will extend the fast recursive ESPRIT (1D)[7] to the fast recursive
3D-ESPRIT that updates the 2D-DOA(azimuth and elevation angles) and TOA information at each time
instant, depending on the new data snapshot from a planar antenna array and frequency sweep operation.
The recursive 3D-ESPRIT presented herein is based on the Standard ESPRIT and the BiSVD subspace
tracking method involving QR-decomposition[6][7]. Also, this algorithm features utilizing the mean
eigenvalue decomposition (MEVD) method[8] as the pairing procedure, which is much simpler than the
SSD. Some computer simulation results will be shown to discuss and demonstrate the effectiveness of
the proposed algorithm in terms of estimation accuracy and computation time.

2 Receiving System and Signal Models
Figure 1 shows the rectangular antenna array with M1�M2 identical antenna elements placed in the x-y
plane. The element spacing is �x and �y in the x-axis and y-axis, respectively. In each element, the
discrete frequency sweeping with the frequency step �f is carried out and thus M3-element frequency
domain linear array data are obtained. Therefore, supposing the frequency domain is along the z-axis,
we can regard the receiving system as a 3D-virtual rectangular array with M1 � M2 � M3(� M)
elements. Also, it is assumed that L multipath waves with delay times �i (i = 1; 2; :::; L) respectively
are incident on the array and their 2D-DOAs( �i, �i: i = 1; 2; :::; L) are given in Fig.2.

In this situation, the data matrix at t time instantX(t) is defined by

X(t) �
=

h
�1=2X(t� 1) (1� �)1=2x(t)

i
(t = 1; 2; � � �) (1)

where x(t) 2 CM�1 is the array snapshot vector at t time instant and �(0 < � < 1) is the forgetting
factor.

3 Principle of Fast Recursive 3D-ESPRIT
3.1 BiSVD subspace tracking method
Bi-Iteration SVD (BiSVD) subspace tracking method[6] is an algorithm of updating SVD of array data
matrix iteratively and estimating recursively the signal subspace eigenvector matrixQA 2 CM�L which
is utilized in 3D-ESPRIT.QA(t) can be updated by the following equation [6].

QA(t) = QA(t� 1)�A(t) + �x?(t)f
H(t) (2)
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�A(t) and fH(t) in (2) are extracted from a certain matrix as follows:
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where “�” stands for uninteresting quantities and GH
A (t) is an orthogonal matrix that is obtained from

the QR-decomposition expressed in (4).
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HR(t)
�
= H(t)R�1B (t) (5)

H(t) �
= RB(t� 1)�A(t� 1) (6)

hHR (t)
�
= hH(t)R�1B (t) (7)

In the above equations,RA(t) andRB(t) are L�L upper triangular matrices. RA(t) is updated by (4)
andRB(t) is updated by the following QR-decomposition.
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�
GH
B (t) : orthogonal matrix produced by QRD

�
In this paper, the initial values are given by

QA(0) =

"
pIL
0

#
(p: constant); RB(0) = �A(0) = IL ; RA(0) = 0L�L (9)

on the assumption that L is known or estimated by another method such as Akaike Information Criteria
(AIC) or Minimum Description Length (MDL)[6].

3.2 Recursive 3D-ESPRIT
The recursive 3D-ESPRIT[7] is a QRD-based 3-dimensional ESPRIT algorithm of updating recursively
the matrices 	1(t), 	2(t) and 	3(t) that are derived from applying the rotational invariance[3] to the
signal subspace eigenvector matrix provided by the above BiSVD subspace tracking method. In this
stage, the same technique as the BiSVD is used for the QR-decomposition of coefficient matrices in
getting 	r(t) (r = 1; 2; 3) via linear equations like A	r(t) = B[4]. 	r(t) (r = 1; 2; 3) obtained in
this way have following eigenstructures[4]:

	r(t) = T
�1(t)�r(t)T (t) (r = 1; 2; 3) (10)

where T�1(t) is an eigenvector matrix and�r(t) is a diagonal eigenvalue matrix of	r(t). The eigen-
value matrices �1(t), �2(t) and�3(t) include the signal parameters of the incident waves.

4 Mean Eigenvalue Decomposition(MEVD) Method
In 3D-ESPRIT, the estimated signal parameters must be paired signal by signal. In this paper, we employ
the MEVD[8] to pair �i, �i and �i for the ith incident wave. From (10) , 	1(t), 	2(t) and 	3(t) are
found to have the common eigenvector, and so they have the following relationship.

	1(t) +	2(t) +	3(t) = T
�1(T ) f�1(t) +�2(t) +�3(t)gT (t) (11)

Therefore, after calculating the common eigenvector T�1(t) of (11), we can obtain the eigenvalues of
	1(t),	2(t) and	3(t) as follows:

�r(t) = T (t)	r(t)T
�1(t) (r = 1; 2; 3): (12)

This is the MEVD providing the paired signal parameters (�i; �i; �i) of all waves[8].



5 Computer Simulation
In this section, computer simulation is carried out using 2 � 2 (M1 = M2 = 2) rectangular array
of isotropic elements with an element spacing of a half wavelength. The center frequency is 5.2GHz,
the frequency sweep width is 200MHz, and the number of frequency data is 11(M3 = 11). There are
two multipath waves arriving at the array (L = 2), and they are completely correlated with each other.
The Gaussian internal noises (thermal noises) of equal power exist at all antenna elements, and they
are statistically independent of incident waves. Detail of a radio environment is described in Table 1.
To decorrelate the coherent waves, the spatial smoothing processing (SSP)[9] is incorporated into our
algorithm. In this simulation, the control parameter p which gives the initial value of QA(t) is 10�8,
and the forgetting factor � is 0.85. Also, SNR is 20dB and the subarray size for the SSP is 2� 2� 7.

RMSEs of estimates for each wave are computed from 100 independent trials and used for sample
performance statics. Figures 3 to 5 show the time variation of RMSEs for wave 1. For comparison,
the estimation results by the conventional TLS-ESPRIT estimator (Standard ESPRIT with MEVD) are
plotted in the same figures. It is found from the figures that RMSEs of TLS-ESPRIT are better than
those of the recursive ESPRIT. However, the difference between them is much small and so we can say
the recursive ESPRIT also provides accurate estimation. The results for wave 2 are the same as wave 1
although they are not shown here.

Further, we measured the computation time of the proposed estimator and the TLS-ESPRIT esti-
mator. Figure 6 shows the computation time for one update. Obviously, the computation time of the
TLS-ESPRIT increases as the number of elements grows large, while the recursive ESPRIT preserves
almost constant and less computational load.

6 Conclusion
In this paper, we have developed the QRD-based fast recursive 3D-ESPRIT for estimating 2D-DOA and
TOA of the multipath waves. Via computer simulation, we have shown that the proposed algorithm is
effective enough in estimation accuracy and computation time. The successful results enable us to use
the proposed algorithm as the real-time processor in the mobile radio systems.
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Table 1: Radio environment

�[deg] �[deg] � [ns] power[dB]
wave 1 30!45 30!45 0!0 0
wave 2 50!60 50!60 10!5 0

(Angles and delay times are changed at the 100th sample.)
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Figure 1: 3D virtual rectangular array
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Figure 2: 2D-DOA of incident wave
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Figure 3: RMSE versus discrete time (samples)
[elevation angle of wave 1]
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Figure 4: RMSE versus discrete time (samples)
[azimuth angle of wave 1]
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Figure 5: RMSE versus discrete time (samples)
[delay time of wave 1]
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Figure 6: Computation time for one update as a
function of M3 in case M1 = M2 = 2


