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Abstract
Theoretical results using the minimum mean-squared error (MMSE) criterion are developed,

which show that an integrated space-time receiver can offer significant performance improvement
relative to the corresponding time-domain-only counterpart. Using the recursive least squares (RLS)
algorithm, the MSE convergence towards the optimum Wiener solution is also presented.

1. Introduction
CDMA for mobile communications has received considerable interest in recent years. Much of

this work has addressed the near-far problem in which strong interfering signals can overwhelm a
weak desired signal in the detection process. In addition, the effect of multipath as well as multiple-
access interference caused by other users sharing the same bandwidth significantly affects the quality
of the received signal. Adaptive antenna array [1], particularly space-time processing techniques, can
provide one of the most effective solutions to these problems. The results in this paper illustrate that
the space-time (ST) receiver outperforms the corresponding time-domain-only (TDO) counterpart
[2,3] in terms of MMSE and capacity.

2. System description
The receiver employs an array of M antennas, which allows it to exploit the space domain

information in the received signals, and at the same time, each antenna incorporates an adaptive filter
operated in a manner similar to an adaptive equalizer, with the aim to further suppress interference in
the time domain. After the down-conversion the total received signal at each antenna element is chip-
matched filtered (CMF) and sampled at the chip rate. Each antenna element is then followed by an N-
tap delay line (TDL), with the tap delay equal to the chip period, where N is the period of spreading
sequence. The received signal samples from a complete symbol interval are then shifted into the TDL
for each iteration. Thus, the M TDLs linearly process M×N samples from M CMFs of the array. The
outputs of TDLs are then summed and sampled at the bit rate. During the training period, the error
signal ε is formed as the difference between the soft decision and the desired user’s data bit. Once the
MSE is at an acceptable level, the training is terminated and the data transmission begins. At this time,
the error signal is formed as the difference between the soft and hard decisions. The weights of the
TDLs are adapted to minimize the MSE according to an adaptive algorithm.

3. Theoretical analysis of MMSE
The spreading waveform of the kth user is assumed to be periodic with the period Tb = NTc

where Tb is the bit interval, and Tc is the chip interval. The spreading code ak of the kth user can be

defined as T
kkkk Naaa ))1(...,),1(),0(( −=    a , and the total received sample signal vector of the ith bit

interval at the mth antenna element with m M= 1 2, , ,   K  is represented by
T
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The demodulation of the ith bit )(1 ib of the 1st user is now considered, in which the total

received signal vector )(i
mr ∈ CN×1 at the mth antenna element can be expressed in a vector form as
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In the above equations, )(
,
i
lka , )1(

,
−i
lka , )(ekf , and )(ekg  are N-dimensional vectors, )(ibk  is the current

data bit, and b ik ( )−1  is the previous data bit of the kth user. θk,l and Pk,l are the phase, and  received

power of the lth path of the kth user, respectively. L is the number of paths per user, τk,l  is the delay of
the lth path of the kth user, τk,l = pk,lTc + δk,l , where pk,l  is an integer, and 0 ≤ δk,l < Tc; d, λ, and φk,l  are
the element spacing, free-space wavelength, and direction of arrival (DOA) of the lth path of  the kth

user, respectively.  The vector )(i
mn  in the mth element is a zero-mean Gaussian random vector

uncorrelated in both time and space with variance 2σ , i.e., )()()]()([ 2 jistsntnE ji −−= δδσ , where
1)/2( −= NNE ob

2σ  with Eb / No representing the data-bit energy to one-sided noise power spectral
density. It is assumed that the signal is narrowband, which means that the propagation time across the
array is small enough so that the time delay at each element can be considered as a phase shift. It is
also assumed that the receiver is synchronised to the desired signal (k = 1) with the strongest path (l =
1), and the carrier phase θ1,1 of the desired signal is perfectly tracked, i.e., θ1,1 = 0 and τ1,1 = 0, and

therefore )1(
1,1
−ia  is a zero vector. The total received signal vector )(i

mr  at the mth antenna element during

the ith bit interval can be written as
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)(ir ∈CMN×1 at time iT is then generated by concatenating the received signal vectors )(i
mr defined in (6)

for M array elements as
Ti

M
ii TTT

i ]...,,,[)( )()(
2

)(
1 r  r rr ≡ ,      (7)

where )()(1)( i
m

imi
m ndAr +Φ= − ,  m = 1, 2, .., M.      (8)

In the above equation, the matrix A ∈ RN×2KL is written by concatenating the vectors Ak  for each k as
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vector d ( )i ∈ R2KL×1 is formed by concatenating the vectors d k ∈ R2L×1 for each k as
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The matrix Φ ∈ C2KL×2KL is expressed in terms of sub-matrices )(kΦ  for each k as
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and )(kΦ ∈ C2L×2L , k = 1, 2, …, K . The vector r( )i can then be written in a matrix form as
)()()( iii ndr +Ω= ,   (13)



3

where
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is formed by writing Tm )( ΦA into the columns of a matrix, and
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The correlation matrix R  of the observation vector )(ir  can be shown to equal

EDrrR +ΩΩ== HHiiE ])()([ .      (16)

In the above equations, E[.], [.]T, and [.]H denote the expectation, transpose, and complex-conjugate
transpose, respectively. It is assumed that the adjacent data bits are independent of each other, and
furthermore, that desired data are independent of the interference and noise. In (16), the correlation

matrix D ∈ R(2KL×2KL) of the vector )(id can then be expressed by
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with   Dk  ∈ R2L×2L  and given by
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and MN)(MN
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The cross-correlation between the desired signal b1(i) and observation vector r( )i can be shown to
equal
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Given that R has an inverse, it follows that the optimum choice for the weight vector that gives the

minimum of E i[ ( )]ε 2 , i.e., the MMSE Jmin , must satisfy

qRw 1−=opt (21)

which is referred to as the Wiener-Hopf equation or the optimum Wiener solution. The resulting
MMSE Jmin  is found to be [4]

qRqwq 12
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minminJ ε . (22)

When the DOAs of the desired signal and interference as well as the signal power are
unknown, the computation of the optimum weight vector wopt is not possible, and the RLS algorithm
[4] can be used to approximate this solution.

4. Numerical results
In this section, the MMSE performance of the ST structure is presented and compared to the

TDO structure using (22). The code sequences are chosen arbitrarily from a Gold set of length N = 31.
The element spacing of uniform linear array is one-half wavelength, and the desired signal is received
at an Eb/No of 20dB. There are 10 users, and the multipath channel has 3 paths for each user with
DOAs uniformly distributed in [-90°, 90°]. The path delays are uniformly distributed within 8 chips,
and the results are averaged over 100 runs. In Figs. 1,3, and 4, the interference-to-desired signal power
ratio Pk/P1 (k ≠ 1) is set to 10dB for strongest paths, and is uniformly distributed within 10dB for the
remaining paths.

Fig. 1 demonstrates that a better MSE convergence with considerably reduced MSE is
obtained by the ST architecture (M = 3) compared with the TDO counterpart (M = 1). The results also
show that the MSE produced by the RLS algorithm converges to the MMSE Jmin attained by the
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Wiener solution for both cases (M = 1, and M = 3). Fig. 2 shows that the ST structure can also provide
a better near-far resistance in the sense that the performance without power control is almost identical
to the performance with perfect power control. The results in Figs. 3 and 4 indicate that MMSE Jmin

against the number of users and Eb/No can be further reduced by increasing the number of antenna
elements M in the array.

5. Conclusions
In this paper, the simulation and analytical results clearly demonstrate that, compared to the

TDO receiver, the ST architecture has been shown to provide significantly better performance and
higher capacity. The results also illustrate that not only has the MMSE been significantly reduced, but
the near-far resistance can also be achieved.
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Fig. 1. MSE convergence to MMSE Jmin.
Time-domain-only (M = 1):
(i) learning curve, (ii) MMSE Jmin

Integrated space-time (M = 3):
(iii) learning curve, (iv) MMSE Jmin
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Fig. 2. Near-far resistance
(i) M = 1, (ii) M = 2, (iii) M = 3, (iv) M = 4,
(v) M = 5
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Fig. 3. MMSE Jmin vs number of users
(i) M = 1, (ii) M = 2, (iii) M = 3, (iv) M = 4,
(v) M = 5

0 5 10 15 20 25 30
10 -5

10 -4

10 -3

10 -2

10 -1

100

Eb/No(dB)

MMSE Jmin

(i)
(ii)

(iii)

(iv)

(v)

Fig. 4. MMSE Jmin vs Eb/No.
 (i) M = 1, (ii) M = 2, (iii) M = 3, (iv) M = 4,
(v) M = 5
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