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1. Introduction
Recent development of wireless communications is remarkable as observed in the increased users

of cellular phones, and simultaneously, various kinds of radio waves make the radio environments much
complicated. Therefore, it is important to understand the radio wave propagation structures to keep high
quality of communications. For the purpose, it is most effective to estimate the signal parameters(e.g.,
DOA: directions of arrival) of individual incoming waves in the wireless systems. It is well known
that the DOA estimators using array antennas have many advantages such as high-resolution direction
finding [1]. Also, the performance of the estimators depends on the fine error calibration of the array
antennas [2], [3], and the errors mainly come from the mutual coupling effects among array elements,
location errors of antenna elements, and unequal gain and phase responses at receivers including antenna
elements and cables [3].

To reduce those array errors, many calibration methods have been studied [2], [3]. In this paper, sim-
ilar to [3], we introduce the weighting function into the array calibration method using reference(pilot)
signals whose DOAs are known. Furthermore, we investigate the optimum weighting function and im-
proved performance of the calibration method through computer simulation.

2. Array Calibration Method for DOA Estimation
Using the K-element array to which we apply the calibration, we receive individually N narrowband

reference signals whose DOAs: θ1, · · · , θN are known. Then, the array input vectors are expressed as

xi(t) = Ma(θi)si(t) + ni(t) (i = 1, 2, · · · ,N) (1)

where a (θi) and si (t) are the array response vector without array errors and the complex amplitude, re-
spectively, of the ith reference signal. Also, ni(t) is the internal additive noise vector in receiving the ith
reference signal, and M is the K×K array error matrix including effects such as inter-element mutual cou-
pling. Estimating the matrix vecM accurately is the purpose of calibration. The correlation(covariance)
matrices of the input vectors x1(t), · · · , xN(t) are obtained as follows.

Ri = E[xi(t)xH
i (t)] = σ2

siam(θi)aH
m(θi) + σ

2
nI (i = 1, 2, · · · ,N) (2)

where

am(θi) = Ma(θi) (i = 1, 2, . . . ,N) (3)

and σ2
si and σ2

n are input powers of the ith reference signal and internal noise, respectively. The dominant
eigenvalue λi and the corresponding normalized eigenvector ei of the matrix Ri are given by

λi = σ2
sia

H
m(θi)am(θi) + σ

2
n (4)

ei = am(θi)/‖am(θi)‖ ≡ ae(θi) (5)

because there are the following relations

Riam(θi) = {σ2
sia

H
m(θi)am(θi) + σ

2
n}am(θi) (i = 1, 2, · · · ,N) (6)
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Table 1: Simulation conditions.
array configuration 4-element uniform linear array

element spacing half wavelength
antenna element half wavelength vertical dipole

number of snapshots for DOA estimation 50

Table 2: Radio environment.
number of waves 1

DOA from array broadside −80 deg to 80 deg
SNR 20dB

As seen from the above expressions, am(θi) is obtained from the eigenvector corresponding to the domi-
nant eigenvalue of the correlation matrix Ri. Using eq.(5) and the relation

am(θi) = ciae(θi) (ci: complex constants) (7)

we find the M and ci which minimize the following cost function.

J =
N∑

i=1

wi‖Ma(θi) − ciae(θi)‖2 (8)

where wi(i = 1, 2, · · · ,N) are real-valued weights for the reference signals. Furthermore, eq.(8) leads to

J = ‖(MA − AeΛ)W1/2‖2F (9)

with

A = [a(θ1), . . . , a(θN)] (10)

Ae = [ae(θ1), . . . , ae(θN)] (11)

Λ = diag{c1, . . . , cN} (12)

W = diag{w1, . . . ,wN} (13)

where ‖ · ‖F denotes the Frobenius norm. The function J is minimized with respect to both M and Λ.
The solution of M which is denoted by M̂ is the calibration matrix desired for DOA estimation.

By giving the weight matrix W effectively, it is expected that we can obtain the calibration matrix
M̂ suitable for the DOA estimation algorithm.

3. Performance Analysis by Computer Simulation
Under conditions shown in Tables 1–4, the computer simulation is carried out to clarify the perfor-

mance. The number of snapshots in Table 3 is for obtaining the matrices R1, · · · , RN . As the array error,
we have here the mutual coupling among the antenna elements and antenna element location errors which
are given in Table 4. The sign ’+’ in the antenna location error of Table 4 means the error in the direc-
tion from element 1 to element 4. Also, the mutual coupling effects are computed using ICT(Improved
Circuit Theory) [4].

The DOA estimation process in this paper is as follows:

Table 3: Setup of reference signals.

number of reference signals 15
DOA from array broadside −70, −60, · · · , 60, 70 [deg]

SNR 30dB
number of snapshots 100
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Table 4: Location errors of antenna elements.
element 1 element 2 element 3 element 4

error 0 +0.1λ −0.1λ +0.05λ
(λ: wavelength)

Step 1: The DOA estimation is carried out using the Beamformer method [1].

Step 2: The adequate weight matrix W is determined, and then the calibration matrix M̂ is computed.

Step 3: To estimate DOAs more accurately, the MUSIC algorithm [1] is applied to the calibrated corre-
lation matrix M̂−1Rxx(M̂H)−1 where Rxx is the correlation matrix of array inputs for DOA estima-
tion.

-80 -70-60 -50-40-30 -20-10 0 10 20 30 40 50 60 70 80

1

DOAs of reference signal[deg.]

W
ei

gh
t

α

θp

Figure 1: Example of rectangular weighting
(θp = 30deg).

For simplicity, the weighting function is set
to be rectangular, and so the value of each weight
wi is 1 or α(0 < α < 1). An example of weight-
ing function with the rectangle width of 5 is illus-
trated in Fig.1. Here, the rectangle width means
the number of reference signals with the weight
equal to 1, and θp in Fig.1 represents the estimated
DOA in Step 1 above. Figures 2–4 show the
RMSE(Root Mean Square Error) obtained from
independent trials of 100 in Step 3 versus the
DOA of the incident wave for the cases where
the values of rectangle width are 3, 5, and 7, re-
spectively. In those figures, α is equal to 10−3,
10−4, or 10−5. Also, the stochastic Cramer-Rao
bound(CRB) [5] is shown.

From the figures, it is observed that there
seem to be the optimum value of α and the opti-
mum rectangle width. In this simulation, the case
of the rectangle width of 3 is seen to outperform the other cases because the sensitivity of choice of α is
relatively low.

4. Conclusion
In this paper, we have investigated the effect of the rectangular weighting on the array calibration

using reference signals via computer simulation of DOA estimation. As a result, it is shown that there
are the optimum rectangle width and height. In the case of 4-element array with half wavelength inter-
element spacing, the rectangular weighting with the width of 3(i.e., 20deg) and α = 10−5 ∼ 10−3 gives
good performance. As the future work, we have to examine the performance when multiple waves are
incident on the various types of array.
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Figure 2: DOA estimation results in the case of rectangle width of 3.
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Figure 3: DOA estimation results in the case of rectangle width of 5.
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Figure 4: DOA estimation results in the case of rectangle width of 7.
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