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ABSTRACT

We consider a computationally eÆcient unitary
formulation of the popular root-MUSIC direction �nd-
ing method. This technique is shown to reduce the
computational demand of root-MUSIC, because it ex-
ploits the eigendecomposition of a real-valued covari-
ance matrix. Closed-form expressions for the perfor-
mance of the unitary root-MUSIC are derived. Addi-
tionally, results of computer simulations and real data
processing are presented involving several benchmark
array data sets. Our theoretical, numerical and ex-
perimental results show that unitary root-MUSIC has
improved threshold and asymptotic performances rel-
ative to conventional root-MUSIC. As both the uni-
tary and conventional root-MUSIC algorithms are ap-
plicable to the same array con�guration { a uniform
linear array, it can be recommended that unitary root-
MUSIC should be always preferred by the user to con-
ventional root-MUSIC.

1. INTRODUCTION

Recently, the problem of reducing the computational
complexity of eigenstructure direction �nding tech-
niques via real-valued formulations has been addressed
in the literature [1]-[3].

Below, a real-valued (unitary) formulation of the
popular root-MUSIC direction �nding algorithm [4]
is presented. First, we show the exact equivalence
of this technique to the so-called Forward-Backward
(FB) root-MUSIC algorithm. We demonstrate, how-
ever, that unitary root-MUSIC has a simpler imple-
mentation than FB root-MUSIC because the former
exploits the eigendecomposition of a real-valued ma-
trix. Then, the asymptotic performance of unitary
root-MUSIC is studied. We show that in situations
with uncorrelated signal sources, the asymptotic per-
formances of the unitary and conventional root-MUSIC
algorithms are identical. However, in coherent source
scenarios (occurring due to the multipath propaga-
tion e�ects), the asymptotic performance of unitary
root-MUSIC is shown to be much better than that
of conventional root-MUSIC. Simulation and experi-
mental results are presented, which demonstrate that
unitary root-MUSIC has better Signal to Noise Ratio
(SNR) threshold than the conventional root-MUSIC
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algorithm. As both the unitary and conventional meth-
ods are applicable to the same array con�guration
{ Uniform Linear Arrays (ULA's), it can be recom-
mended that unitary root-MUSIC should be always

preferred by the user to conventional root-MUSIC.

2. ARRAY SIGNAL MODEL AND

UNITARY ROOT-MUSIC

Assume that a ULA of M sensors receives q (q < M)
narrowband signals impinging from the Directions of
Arrival (DOA's) �1; : : : ; �q. Assume that there are
N data snapshots x(1);x(2); : : : ;x(N) available. The
M � 1 array observation vector can be modeled as [4]

x(t) = As(t) + n(t) ; (1)

where
A = [a(�1); : : : ; a(�q)] (2)

is the M � q direction matrix,

a(�) =
�
1; e

j (2�=�) d sin �
; : : : ; e

j (2�=�) d(M�1) sin �
�T
(3)

is the M � 1 steering vector, s(t) is the q � 1 vector
of source waveforms, n(t) is the M �1 vector of white
sensor noise, � is the wavelength, d is the interelement
spacing, and (�)T stands for the transpose.

De�ne the M � M true and sample real-valued
covariance matrices as [1]-[3]

C = Q
H
RFBQ ; Ĉ = Q

H
R̂FBQ ; (4)

where

RFB =
1

2
(R+ JR

�

J) ; R̂FB =
1

2
(R̂+ JR̂

�

J) (5)

are the centro-Hermitian FB covariance matrix and its
sample estimate, respectively. Here,

R = E fx(t)xH(t)g = ASA
H
+ �

2
I (6)

is the conventional complex-valued covariance matrix,

R̂ =
1

N

NX
k=1

x(k)x
H
(k) (7)

is its sample estimate, J is the exchange matrix with
ones on its antidiagonal and zeros elsewhere, Q is any
unitary, column conjugate symmetric M �M matrix
satisfying JQ� = Q [2], S = Efs(t)sH(t)g is the q � q

高田 潤一




source waveform covariance matrix, I is the identity
matrix, �2 is the noise variance, N is the number of
snapshots, and (�)� and (�)H denote the transpose and
the Hermitian transpose, respectively. The sparse ma-
trices [1]-[3]

Q =
1p
2

�
I jI
J �jJ

�
; Q =

1p
2

"
I 0 jI

0T
p
2 0T

J 0 �jJ

#

(8)
can be used for arrays with an even and odd number
of sensors, respectively. Here, the zero vector 0 =
(0; 0; : : : ; 0)T .

De�ne the eigendecompositions of the complex-
and real-valued true covariance matrices in a standard
way [2]

R = V�V
H
= VS�SV

H

S + �
2
VNV

H

N ; (9)

RFB = U�U
H
= US�SU

H

S + �
2
UNU

H

N ;(10)

C = E�E
H
= ES�SE

H

S + �
2
ENE

H

N ; (11)

where VS = [v1; : : : ;vq], VN = [vq+1; : : : ;vM ], �S =
diagf�1; : : : ; �qg, US = [u1; : : : ;uq], UN = [uq+1; : : : ;
uM ], �S = diagf�1; : : : ; �qg, ES = [e1; : : : ; eq], EN =
[eq+1; : : : ; eM ], �S = diagf1; : : : ; qg, and the sub-
scripts S and N stand for signal- and noise-subspace,
respectively. The eigendecompositions of the sample
covariance matrices can be de�ned as

R̂ = V̂�̂V̂
H
= V̂S�̂SV̂

H

S + V̂N�̂NV̂
H

N ; (12)

R̂FB = Û�̂Û
H
= ÛS�̂SÛ

H

S + ÛN�̂NÛ
H

N ; (13)

Ĉ = Ê�̂Ê
H
= ÊS�̂SÊ

H

S + ÊN�̂NÊ
H

N (14)

Writing the characteristic equation for the matrix
R̂FB as

R̂FBû = �̂û ; (15)

we obtain that

Q
H
R̂FBû = Q

H
R̂FBQQ

H
û = ĈQ

H
û = �̂Q

H
û (16)

It is readily veri�able that equation (16) is the char-

acteristic one for the real-valued covariance matrix Ĉ
in (4). Hence, the eigenvectors and eigenvalues of the

matrices Ĉ and R̂FB are related as

Ê = Q
H
Û ; �̂ = �̂ (17)

The conventional root-MUSIC polynomial is given
by

fMUSIC(z) = a
T
(1=z)V̂NV̂

H

N a(z) ; (18)

where a(z) = [1; z; : : : ; zM�1]T , z = ej!, and ! =
2�
�
d sin �. Similarly to (18), the FB root-MUSIC poly-

nomial can be used:

fFB(z) = a
T
(1=z)ÛNÛ

H

Na(z) (19)

Using (17), we obtain that

fFB(z) = a
T
(1=z)QQ

H
ÛNÛ

H

NQQ
H
a(z)

= a
T
(1=z)QÊNÊ

T

NQ
H
a(z)

= ~a
T
(1=z)ÊNÊ

T

N~a(z) = fU(z) ; (20)

where the transformed manifold ~a(z) = QHa(z) should
be exploited for the polynomial rooting in (20). The
relationship between the standard and transformed

manifolds follows from the expression for the real-
valued true covariance matrix

C = Q
H
A~SA

H
Q+ �

2
Q
H
Q = ~A~S ~A

H
+ �

2
I ; (21)

where

~S =
1

2

�
S+DS

�

D
H
�
; ~A = Q

H
A ;

D = diagfe�j
2�

�
d(M�1) sin �1 ; : : : ; e

�j
2�

�
d(M�1) sin �qg ;

Let us term the polynomial (20) as the unitary
root-MUSIC polynomial since it makes use of the eigen-
decomposition of the real-valued matrix Ĉ rather than
that of the complex-valuedmatrices R̂ and R̂FB. From
(20), it is apparent that the FB and unitary root-
MUSIC polynomials are identical. Therefore, the per-
formance of unitary root-MUSIC does not depend on
a particular choice of the unitary matrix Q, although
(8) seems to be an excellent choice because the ma-

trix Ĉ can be computed from the matrix R̂FB with
a very low computational demand. It is important
to stress that, although both polynomials fFB(z) and
fU(z) are proven to be identical, the calculation of the
coeÆcients of fU(z) is an easier operation (if imple-
mented via the real-valued eigendecomposition (14)),
because the real-valued eigendecomposition has a re-
duced computational cost relative to the complex one,
approximately by a factor of four. Since the poly-
nomial rooting is a much simpler operation than the
eigendecomposition [5], we conclude that the overall
computational complexity of unitary root-MUSIC is
about four times lower than that of conventional root-
MUSIC. We also stress that this conclusion cannot be
extended to the unitary spectral MUSIC technique [1]
because the main computational cost of spectral MU-
SIC is due to the demanding spectral search rather
than the eigendecomposition.

3. ASYMPTOTIC PERFORMANCE

Let us introduce the eigenvector error

gi = êi � ei ; i = 1; : : : ; q (22)

Then, the following result holds [6]:
Lemma: The signal-subspace eigenvector estima-

tion errors (22) are asymptotically (for a large number
of snapshots N) jointly Gaussian distributed with zero
means and covariance matrices given by

Cov fgi;gkg =
1

N

0
B@ qX

l=1
l6=i

qX
p=1
p6=k

�lpki

(i � l)(k � p)
ele

T

p

+
i �

2

2 (i � �2)2
ENE

T

N Æik

�
; (23)

where �lpki =
1
2
(ipÆikÆlp + ikÆipÆkl +w

T

l (epe
T

k+

eke
T

p )wi), wi = Im
�
QHRQ

	
ei, 1 � i; k � q, and

Æik denotes the Kronecker delta.
Following [4], we obtain that the DOA estimation

Mean Square Error (MSE) of unitary root-MUSIC is
given by

E
�
(�̂i � �i)

2
	
=

�
�

4�d cos �i

�2 E
�
Ĝ(!i)

	
�
~dH(!i)ENE

T

N
~d(!i)

�2 ;
(24)



where ~d(!) = d~a(!)=d!,

Ĝ = 2Re

( 
~d
H

 
qX

k=1

(ekg
T

k + gke
T

k )

!
~a

!2)

+ 2

�����~dH
 

qX
k=1

(ekg
T

k + gke
T

k )

!
~a

�����
2

; (25)

and, for the sake of brevity, we denote Ĝ = Ĝ(!i),

~a = ~a(!i), and ~d = ~d(!i). Using (23)-(24) and the
readily veri�able equations ET

N~a = 0 and

�iplk = �kpli = �ilpk = �klpi ; (26)

we obtain that

E
�
Ĝ
	
=
�2

N

qX
k=1

k

(k � �2)2

�
Re
�
(e

T

k ~a)
2 ~d

H
ENE

T

N
~d
�
	

+ jeTk ~aj2 ~dHENE
T

N
~d
�

(27)

In can be shown that ~d(!) = jQH�Q ~a(!) where
� = diag f0; 1; 2; : : : ;M � 1g. Also, it can be read-
ily veri�ed that Ja(!) = zM�1a�(!), JQ� = Q, and
UT

N = UH

NJ. Using all these properties and (17), we
can prove that

(e
T

k ~a)
2 ~d

H
ENE

T

N
~d
�

=�jjeTk ~aj2(~dHENE
T

NQ
H
J�JQ~a)

(28)
Using the identities ET

N~a = 0 and � � (M � 1)I =
�J�J, it is easy to show that

�jET

NQ
H
J�JQ~a = E

T

N
~d (29)

Inserting (29) into (28), we obtain

(e
T

k ~a)
2 ~d

H
ENE

T

N
~d
�

= jeTk ~aj2 ~dHENE
T

N
~d (30)

Substituting 30) into (27) and using (17), we derive
from (24) the �nal expression for the DOA estimation
MSE:

E
�
(�̂i � �i)

2
	
=

�
�

4�d cos �i

�2 �2Pq

k=1

�k

(�k��
2)2

juHk aj2

N dHUNU
H

Nd
;

(31)
where d(!) = da(!)=d! and the simpli�ed notations
a = a(!i) and d = d(!i) are used. Comparing (31)
with equations (26) and (28) in [4], we see that the
only di�erence between the MSE's of the conventional
and unitary root-MUSIC algorithms is that our ex-
pression (31) for the unitary root-MUSIC MSE con-
tains the eigenvectors and eigenvalues of the FB co-
variance matrix RFB, whereas the aforementioned ex-
pressions in [4] contain the eigenvectors and eigen-
values of the conventional covariance matrix R. Ap-
parently, in uncorrelated source scenarios R = RFB,
and, therefore, we conclude that the asymptotic per-
formances of the unitary and conventional root-MUSIC
algorithms are identical in this case. However, in mul-
tipath scenarios, where the sources may be correlated
or coherent, the asymptotic performance of unitary
root-MUSIC is better than that of conventional root-
MUSIC due to the FB averaging e�ect. This fact is
clearly demonstrated in the next section by means of
comparison of our analytical and simulation results.
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Figure 1: RMSE's vs. the SNR in the �rst example.
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Figure 2: RMSE's vs. the SNR in the second example.

4. SIMULATIONS

We consider a ULA of M = 10 omnidirectional sen-
sors with the half-wavelength interelement spacing,
and two equally powered narrowband sources with
�1 = 10Æ and �2 = 15Æ. A total of 1000 indepen-
dent simulation runs have been used and the number
of snapshots taken is N = 100. In both our exam-
ples, the experimental DOA estimation Root-Mean-
Square Errors (RMSE's) have been compared with the
stochastic Cram�er-Rao Bound (CRB) and with the re-
sults of our asymptotic analysis.

In the �rst and second examples, we modeled two
uncorrelated and correlated sources (with the corre-
lation coeÆcient equal to 0:99 and zero intersource
phase in the �rst array sensor), respectively. Figures
1 and 2 show the results for these examples.

From these �gures, we remark that there is an ex-
cellent correspondence of the theoretical curves and
experimental points at high SNR values. As expected,
for uncorrelated sources the asymptotic performances
of both algorithms are similar. However, from the ex-
ample with the correlated sources, we observe that the
unitary root-MUSIC algorithm performs asymptoti-
cally much better. Moreover, in both examples uni-
tary root-MUSIC has essentially lower SNR threshold
than conventional root-MUSIC.
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Figure 3: Real sonar data processing.

5. EXPERIMENTAL STUDY

In our experimental part of study, real sonar and ul-
trasonic ULA data have been used. The sonar experi-
ments were conducted by STN Atlas Elektronik, Bre-
men, in October 1983, in the Bornholm Deep, Baltic
Sea. A horizontal ULA of 15 hydrophones was towed
by a surface ship. The sea depth at the experimental
site was about 60 � 65 m. The towed receiving ar-
ray had the interelement spacing d = 2:56 m and the
sampling frequency fs = 1024 Hz after lowpass �lter-
ing with the cuto� 256 Hz. The narrowband snapshots
with the 4 Hz bandwidth have been formed from these
wideband data after the DFT using the frequency bin
f = 240 Hz. The sequence of covariance matrices has
been estimated using nonoverlapping sliding windows
with four seconds duration.

Figs. 3 (a) and (b) show the results of real sonar
data processing using the conventional and unitary
root-MUSIC methods, respectively. From these plots,
we see that both algorithms have nearly identical per-
formance.

The ultrasonic data were recorded at University of
Wyoming Source Tracking Array Testbed (UW STAT)
[7]. These narrowband 6-element array data are avail-
able on theWorld Wide Web at http://wwweng.uwyo.
edu/electrical/array.html. They have the carrier
frequency 40 kHz and the signal bandwidth 200 Hz.
The receiving ULA with the interelement spacing 2:1�
has been used.

A rectangular (maximal-overlap) sliding window
with N = 150 snapshots has been used to estimate the
source trajectories. The results for conventional and
unitary root-MUSIC are shown in Fig. 4 (a) and (b),
respectively. From these plots, we observe that both
algorithms have serious problems when the sources be-
come closely spaced. However, from Fig. 4 we see that
unitary root-MUSIC has better threshold performance
than conventional root-MUSIC.

6. CONCLUSIONS

The real-valued (unitary) root-MUSIC algorithm has
been developed for direction �nding in sensor arrays.
The unitary and FB root-MUSIC polynomials have
been shown to be identical, but unitary root-MUSIC
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Figure 4: Real ultrasonic data processing.

provides essentially lower computational complexity
than the conventional root-MUSIC technique. Closed-
form expressions for the large sample MSE of unitary
root-MUSIC have been derived and compared with the
well-known asymptotic results for conventional root-
MUSIC. It has been shown that unitary root-MUSIC
performs asymptotically identically to or better than
conventional root-MUSIC, depending on source mu-
tual correlation. Additionally, the results of our sim-
ulations and real data processing have shown the bet-
ter performance of unitary root-MUSIC in the thresh-
old domain. Since the unitary and conventional root-
MUSIC techniques are both applicable in the ULA
case, we conclude that unitary root-MUSIC should
be always preferred by the user to conventional root-
MUSIC.
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