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1 - Int r oduction 
The primary objective of this paper is to discuss the relationship between 

the geometrical characteristics of a target and the elements of its scatter ing 
matrix and its Nueller matrix . The results are the n applied to inverse 
scattering. The analysis is performed at high frequencies using Geometrical 
and Physical OptiCS and Geometrical Theory of Diffraction. 

2 - Smooth convex target 
At high frequencies, when the loca l principal radi i of curvature of a 

smooth convex target are large comptlred to the wavelength, the diffracted 
field can be split into a specular point contribution and creeping wave 
contributions. 
Specular ~ contribution : extended geometrical optiCS approach 
In the illuminated region in space , awa~' from the shadow boundary, the 
incident field gives rise to an extended reflected field not strictly limited 
t o the GO reflected field. which can be represented by an asymptotic expansion 
in powers of 11k (k ;; wave number) knnwn as the Luneberg-Kli ne expansion. The 
first two terms of this expansion may be written in the form : 
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difft'action dyadic, 
~ 1'2 the principal 

::,~ere R is the GO reflection dyadic, C the second order 
E (Q) thf! incident field at the reflection point Q and 
radiliof curvature at Q of the reflected wavefront . 
If e is the vector amplitude of the incident field, the

o dependence of the extended GO field is contained in the vector e polarization 
defined by : 
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I t is shown that the first term is independent of the geometry o f the target 
whereas the second term is curvature dependent. 

Explicit expressions for the second order term of the reflected field at 
the surface will be given. They have first been published by Meckelburg 111 . 
For monostatic diffraction they depend locally on the difference between the 
pri ncipal curvatures of the surface. This property has been established 
earlier by Bennet t 121 via the space- time integral equation approach and 
applied to inverse scattering by Faa, Chaudhuri and Boerner 131. For bistatic 
dif f ract i on the exact expression obtained in (1) is more complex.But for small 
bistatic angles it leads to a formula identical to that obtained by a 
different approach in 141. 
Creeping wave contribution 
It is well known that for a perfectly condUcting target. the normal and 
tangential components of the incident field at the shadow boundary travel 
independently along the geodeSiC and that no coupling between these two 
components occurs, at least in the leadi ng te rm o f the asymptotic expansion. 
Moreover , the decay coef fi cients of the c reeping wave modes for the tangential 
component are much higher than for the normal component. As a consequence. the 
contribution to the diffracted field coming from the tangential component is 
negligible, especially in t he monostatic case due t o the length of the 
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geodesic pa t h. This pr operty dominates the polarization dependence of the 
creeping waves in the monostatic case o n a smoo th convex body i l luminated by a 
local plane wave. 

The paths co rresponding to the dominan t contributions depen d on the 
polarizatio n of t h e incident field. For an oblon g body for instance, t he 
shortest geodesic path gives the dominant contribution to the diffracted field 
when t h e polarization o f the incident field is perpendicular to the axis of 
t h e body whereas the longes t geodesic path gives t h e dominant contribution 
wh e n t he polarization is parallel to this axis. The a mplitud e of the 
diffracted field associated with creeping waves is therefore not very 
sensitive to polarization. However, the relative phase is highly sensitive to 
polarization and contains i nfonnation on the shape of the body through the 
c reepi n g wave path length . 

For the bistatic case, the polarization o f a creepin g wave diffracted 
field depend on the angle between the normals ft(Q) and t\(Q') to the surface 
at the extremities Q and Q of the geodesic which is directly r elated t o the 
tor sion of the geodesic between Q and Q' . This last parameter gives also an 
information on the shape of the body especially when its variation with the 
aspect angles is measured. 

3 - Target with edges 
The OTO solution for the far field resulting fro m the diffraction of a 

plane wave by a curved perfectly conduc ting wedge is given by lsI : 

~(P) ( 3) 

where Q is the diffraction point on the edgp. and E i(Q) is the incident field 
at that pOint . The other notations in (3) have the f ollowing meaning 

radius of c urvature at Q of the diffracted wavefront i n the plane of 
diffraction 

D diffraction dyadic 

The general eXpression of D in ray fixed coordi nates is 

o = - ~ ~. Dh - f~' 05 ( ~) 

where $ , ~ ' , @, ~, are unit vectors assoc iated with spherical coordinates 
a s s hown on f igure I and where D

s
' Dh are the dif f raction coe ff icients f or 

soft and hard bounda ry condi tions . 
For o ur purpose, it i s not necessary t o know the explicit expressions o f 

Os and Dh which can be found in 151. If we write : 
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completely defined by its projections a and b on ~, and ~' 

-;i :=a.~, <- b0' 
If we substitute (7) into (6) we get: 
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We see that the vector (a 4J <-b f-') has the same polarization ellipse as the 
incident field . The ellipse is r otated by an angle which is equal to the angle 
between the edge-fixed plane of incidence and the plane of diffraction. 

A 

POI' ~onostatic diffraction! these two planes are the same . Hence the vector a$ 
• b~ is identical to e. We call t his term the symetric part. It is 
insensitive to the polarization of the incident field . The other term is the 
no n symetric part. It is sensitive to the polarization of the incident field 
and is proportional to the difference between t he edge diffraction 
coefficients. If a target has more than one edge , several singly diffracted 
rays reach the observer. POI' an observer at large distance from the ta rget all 
incident and diffracted rays in monostatic diffraction are parallel a nd have 
therefore the same ray fixed coordinate system. Hence, the symetric part of 
the total diffracted field is equal to the sum of the symetric parts of the 
fields diffracted by each edge and is therefore also insensitive to 
polarization. 

4 - Inverse scattering techniques 
Formulas (5) show that the polarization dependence of a wedge diffracted 

field is similar to that of the second order term of the Luneberg- Kline 
expansion of the extended reflected field. Both phenomena are therefore well 
described by the Stokes matrix (Mueller matrix) 161. Indeed we have shown that 
for monostatic diffraction. the edge diffracted field can be split in to a 
symetric part which is insensitive to polarization and a non symetric part 
which contains the polarization depend ence. The same procedure can be applied 
to the second term of the asymptotic expansion of the extended reflected field 
and more generally to the field diffracted by higher order singular ities 
(curvature discontinuity). Since the symetric part o f the scattering matrix 
appears on the diagonal of the 1'1ueller matrix whereas the non symetric part 
appears in the coefficients D and C 161, a relationship appears between the 
geometrical characteristics of a target and the elements of its Mueller 
matrix. It will be shown that this relationship leads to new inverse 
scattering techniques. 
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F'igure 1 Ray-fixed coordinates for edge diffrAction 

- 524-


