PROCEEDINGS OF ISAP "92, SAPPORO, JAPAN

POLARIZATION DEPENDENCE IN GEOMETRICAL AND PHYSICAL
OPTICS INVERSE SCATTERING - AN OVERVIEW

F. Molinet
Société MOTHESIM, La Boursidiére, 92357 Le Plessis-Robinson, France

1 - Introduction

The primary objective of this paper is to discuss the relationship between
the geometrical characteristics of a target and the elements of its scattering
matrix and its Mueller matrix. The results are then applied to inverse
scattering. The analysis is performed at high frequencies using Geometrical
and Physical Optics and Geometrical Theory of Diffraction.

2 - Smooth convex target

At high frequencies, when the local principal radii of curvature of a
smooth convex target are large compared to the wavelength, the diffracted
field can be split into a specular point contribution and creeping wave
contributions.
Specular point contribution : extended geometrical optics approach
In the illuminated region in space, away from the shadow boundary, the
incident field gives rise to an extended reflected field not strictly limited
to the GO reflected field, which can be represented by an asymptotic expansion
in powers of 1/k (k = wave number) known as the Luneberg-Kline expansion. The
first two terms of this expansion may be written in the form :
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w?ere R is the GO reflection dyadic, C the second order diffraction dyadic,
E (Q) the incident field at the reflection point Q and ?1.2 the principal
radiiiof curvature at Q of the reflected wavefront.

If e is the vector amplitude of the incident Ffield, the, polarization

dependence of the extended GO field is contained in the vector T defined by :
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It is shown that the first term is independent of the geometry of the target
whereas the second term is curvature dependent.

Explicit expressions for the second order term of the reflected field at
the surface will be given. They have first been published by Meckelburg |1|.
For monostatic diffraction they depend locally on the difference between the
principal curvatures of the surface. This property has been established
earlier by Bennett |2| via the space-time integral equation approach and
applied to inverse scattering by Foo, Chaudhuri and Boerner |3|. For bistatic
diffraction the exact expression obtained in (1) is more complex.But for small
bistatic angles it 1leads to a formula identical to that obtained by a
different approach in |4|.

Creeping wave contribution

It is well known that for a perfectly conducting target, the normal and
tangential components of the incident field at the shadow boundary travel
independently along the geodesic and that no coupling between these two
components occurs, at least in the leading term of the asymptotic expansion.
Moreover, the decay coefficients of the creeping wave modes for the tangential
component are much higher than for the normal component. As a consequence, the
contribution to the diffracted field coming from the tangential component is
negligible, especially in the monostatic case due to the length of the
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geodesic path. This property dominates the polarization dependence of the
creeping waves in the monostatic case on a smooth convex body illuminated by a
local plane wave.

The paths corresponding to the dominant contributions depend on the
polarization of the incident field. For an oblong body for instance, the
shortest geodesic path gives the dominant contribution to the diffracted field
when the polarization of the incident field is perpendicular to the axis of
the body whereas the longest geodesic path gives the dominant contribution
when the polarization is parallel to this axis. The amplitude of the
diffracted field associated with creeping waves is therefore not very
sensitive to polarization. However, the relative phase is highly sensitive to
polarization and contains information on the shape of the body through the
creeping wave path length.

For the bistatic case, the polarization of a creeping wave diffracted
field depend on the angle between the normals fi(Q) and A(Q') to the surface
at the extremities Q and Q of the geodesic which is directly related to the
torsion of the geodesic between Q and Q'. This last parameter gives also an
information on the shape of the body especially when its variation with the
aspect angles is measured.

3 - Target with edges
The GTD solution for the far field resulting from the diffraction of a
plane wave by a curved perfectly conducting wedge is given by |5|
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where Q is the diffraction point on the edge andlﬁifQ} is the incident field
at that point.The other notations in (3) have the following meaning :

? : radius of curvature at Q of the diffracted wavefront in the plane of
s diffraction
D diffraction dyadic

The general expression of D in ray fixed coordinates is :
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where ﬁl 5 31'. ‘3, ﬁ" are unit vectors associated with spherical coordinates
as shown on figure 1 and where D _, Dh are the diffraction coefficients for
soft and hard boundary conditions.
For our purpose, it is not necessary to know the explicit expressions of
Ds and Dh which can be found in |5|. If we write

D = & B * D, - D

h _h7_a _h7_a.
(5)
D = D. + D - D. - D
8 JLjr_ﬁ. _h_z__&
and substitute the%e expressions in (3), we get for the polarization

dependent term D . &
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All quantities in the bracket on the right hand side of (6) are fixed for a
given ray path. Moreover, the polarization of the incident field is
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completely defined by its projections a and b on &‘ and a' :
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If we substitute (7) into (6) we get
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We see that the vector(a ¢+ba’) has the same polarization ellipse as the
incident field. The ellipse is rotated by an angle which is equal to the angle
between the edge-fixed plane of incidence and the plane of diffraction. =
For Eonostatic diff‘ractioni these two planes are the same. Hence the vector ad
+ bp is identical to B . We call this term the symetric part. It is
insensitive to the polarization of the incident field. The other term is the
non symetric part. It is sensitive to the polarization of the incident field
and 1is proportional to the difference between the edge diffraction
coefficients. If a target has more than one edge, several singly diffracted
rays reach the observer. For an observer at large distance from the target all
incident and diffracted rays in monostatic diffraction are parallel and have
therefore the same ray fixed coordinate system. Hence, the symetric part of
the total diffracted field is equal to the sum of the symetric parts of the
fields diffracted by each edge and is therefore also insensitive to
polarization.

} - Inverse scattering techniques

Formulas (5) show that the polarization dependence of a wedge diffracted
field is similar to that of the second order term of the Luneberg-Kline
expansion of the extended reflected field. Both phenomena are therefore well
described by the Stokes matrix (Mueller matrix) |6|. Indeed we have shown that
for monostatic diffraction, the edge diffracted field can be split into a
symetric part which is insensitive to polarization and a non symetric part
which contains the polarization dependence. The same procedure can be applied
to the second term of the asymptotic expansion of the extended reflected field
and more generally to the field diffracted by higher order singularities
(curvature discontinuity). Since the symetric part of the scattering matrix
appears on the diagonal of the Mueller matrix whereas the non symetric part
appears in the coefficients D and C |6I, a relationship appears between - the
geometrical characteristics of a target and the elements of its Mueller
matrix. It will be shown that this relationship leads to new inverse
scattering techniques.
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Figure 1 : Ray-fixed coordinates for edge diffraction
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