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Abstract

This paper presents a fast solution to the electromagnetic
scattering by large-scale 3D dielectric bodies of arbitrary
permittivity and permeability. The scattering problem is char-
acterized by using combined field volume integral equation
(CFVIE). The CFVIE is formulated in the volume of the
scatterers by considering the total electric and magnetics fields
as the sum of the incident wave and the radiated wave of
the equivalent electric and magnetic volume currents. The
resultant CFVIE is discretized and solved by using the method
of moments (MoM). For large-scale scattering problems,
adaptive integral method (AIM) is then applied in the MoM
in order to reduce the memory requirement and accelerate
the matrix-vector multiplication in the iterative solver. The
resultant method has a memory requirement of O(N) and a
computational complexity of O(N log N) respectively, where
N denotes the number of unknowns.

1. INTRODUCTION

The electromagnetic analysis of dielectric structures is im-
portant as it is widely use in many engineering applications.
An understanding of the scattering by dielectric structures is
imperative in order to take account of its interference and
coupling effect with other components. Volume integral equa-
tion (VIE) is among one of the methods that has been widely
used to analyze electromagnetic problems involving dielectric
materials, especially inhomogeneous dielectric materials. In
the past, most of the attention have been focused on solving
the electromagnetic problems of non-magnetic problems (µ =
µ0), which the VIE only needs to consider the total electric
field in the inhomogeneous region [1–3]. However, magnetic
materials (µ �= µ0) are also been considered in engineering
applications, for example, magnetic coating materials. Hence
the existing VIE can be extended to analyze scattering prob-
lems of object made of magnetic material or complex material
properties,i.e. arbitrary permittivity and permeability.

The VIE for pure dielectric object can be denoted as
electric field volume integral equation (EFVIE) as the equation
consider only the electric fields due to impressed sources and
equivalent electric currents in the object. Likewise, we denote

the VIE for pure magnetic object as magnetic field volume
integral equation (MFVIE) as it only requires the magnetic
fields due to the impressed sources and equivalent magnetic
currents in the object. For a complex material object with
mixed dielectric and magnetic properties, the combined field
volume integral equation is used (CFVIE) as both electric
and magnetic fields inside the object are involved in the
formulation. In this paper, the CFVIE is presented for the
analysis of scattering by objects with arbitrary permittivity
and permeability. The CFVIE is then discretized and solved by
using method of moments to obtain the two unknown electric
and magnetic currents.

However, it is well known that the traditional MoM cannot
handle electrically large objects due to its huge memory
requirement and computational complexity. The CFVIE fur-
ther burden the MoM as the equation contains two set of
unknowns. To alleviate this problem, we can resort to the
adaptive integral method (AIM) [4–7]. The AIM is applied
to reduce the memory requirement for matrix storage and
also to accelerate the matrix-vector multiplication in iterative
solver. It is noted that all the past efforts in AIM are only
focus on solving the EFVIE for dielectric objects. However
in this paper, we will apply the AIM to solve the CFVIE of
electrical large inhomogeneous complex material object. In the
following sections, we will first give the formulation of CFVIE
for scattering problems of complex material object and follow
by the MoM procedures to solve the CFVIE numerically. Then
we will describe the use of AIM in MoM to solve large-scale
electromagnetic problems. Finally we will present numerical
examples to demonstrate the accuracy of our method.

2. FORMULATION

A. Combined Field Volume Integral Equation

Consider an arbitrarily shaped 3-D complex material scatterer,
which consists of inhomogeneous dielectric and magnetic ma-
terials. The object is embedded in an isotropic homogeneous
background medium with permittivityεb and permeabilityµb.
The scatterer is illuminated by an incident wave (E inc, Hinc),
which is excited by impressed sources in the background
medium. The scatterer is assumed to have permeabilityµ(r)
and permittivityε(r) at locationr.
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By invoking the volume equivalence principle, the dielectric
and magnetic materials can be removed and replaced by
equivalent volume electric current densitiesJV and equivalent
volume magnetic current densitiesKV , respectively. Through-
out this paper, the subscriptse and h are used to denote
any variables associated with electric or magnetic sources. By
considering the total electric fieldE in the inhomogeneous
material region as the sum of the incident electric field and
the scattered electric field due to theJV andKV , the EFVIE
can be obtained

Einc =
D

ε(r)
+ ηbL(JV ) + M(KV ) (1)

where D = ε(r)E is the electric flux density andηb =√
µb/εb is the intrinsic impedance of the background medium.

The operatorL andM are defined as

L(X) = jkb

∫
V

XG +
1
k2

b

∇∇ · (XG) dV ′ (2a)

M(X) = ∇ ×
∫

V

XG dV ′ (2b)

where kb = ω
√

µbεb is the wavenumber of the background
medium andG = exp(−jkb|r − r′|)/(4π|r − r′|) is the 3-D
scalar Green’s function in the background medium. Similarly,
by considering the total magnetic fieldH in the inhomoge-
neous material as the sum of the incident magnetic field and
the scattered magnetic field due to theJV and KV , we can
write the MFVIE as the following

Hinc =
B

µ(r)
+

1
ηb

L(KV ) −M(JV ) (3)

where B = µ(r)H is the magnetic flux density. It is also
noted that the equivalent current densities are related to the
electric and magnetic flux densities through

JV = jωκe(r)D(r) (4a)

KV = jωκh(r)B(r), (4b)

where κe and κh are the respective contrast ratios of the
permittivity and permeability, given as

κe(r) =
ε(r) − εb

ε(r)
(5a)

κh(r) =
µ(r) − µb

µ(r)
. (5b)

B. Method of Moments

To solve the resultant CFVIE using the Method of Moments
(MoM), the equivalent current densities are not directly used as
the unknown quantities. Instead, the electric and magnetic flux
densities are used as the continuity of the normal components
of both flux densities can be ensured by using proper basis
functions.

The volume of the complex material objects are discretized
by using tetrahedral elements. Tetrahedral elements are used
because of their flexibility to model arbitrarily shaped 3-
D object. The dielectric and magnetic properties in each
individual tetrahedral element are assumed constant, which

is convenient to model the arbitrary material properties. For
tetrahedral elements, the suitable basis functions are the SWG
basis functions [1]. The features of SWG basis functions,
such as the continuity of the electric flux density normal to
the interior face, make them suitable to be implemented in
the volume integral equation. The electric and magnetic flux
densities are then expanded using the SWG basis functions
fn as

D(r) =
Ne∑

n=1

Dnfn (6a)

B(r) = ηb

Nh∑
n=1

Bnfn (6b)

where theDn andBn denote the coefficients to be determined,
and thefn denotes then-th basis function, which is defined
on two attached tetrahedrons associated with then-th face. For
then-th face located at the exterior boundary of the object, an
auxiliary tetrahedron is introduced in the exterior region where
the free vertex of the auxiliary tetrahedron coincide with the
center of then-th face [1]. And from (4), theJ V and KV

can be expressed as

JV = jω

Ne∑
n=1

κe (r)Dnfn (7a)

KV = jωηb

Nh∑
n=1

κh (r)Bnfn. (7b)

Subsequently, we substitute (7) into (1) and (3), and test
the (1) with fm and (3) withηbfm. This results in a linear
system consists ofNe + Nh independent equations as given
below

〈
fm, Einc

〉
=

Ne∑
n=1

Dn

[〈
fm,

fn

ε(r)

〉
+

〈
fm, ηbL(κefn)

〉]

+
Nh∑
n=1

ηbBn

[
〈fm,M(κhfn)〉

]
,

m = 1, 2, ..., Ne (8a)

〈
ηbfm, Hinc

〉
= −

Ne∑
n=1

ηbDn

[
〈fm,M(κefn)〉

]

+
Nh∑
n=1

η2
bBn

[〈
fm,

fn

µ(r)

〉
+

〈
fm,

1
ηb

L(κhfn)
〉]

,

m = Ne + 1, Ne + 2, ..., Ne + Nh. (8b)

Alternatively, (8) also can be written in a matrix form as(
Z

EE
Z

EH

Z
HE

Z
HH

)(
D
B

)
=

(
Einc

H inc

)
. (9)

The sub-matricesZ
EE

andZ
EH

represent the contributions
of the equivalent electric and magnetic sources, respectively, to
the electric field. While the sub-matricesZ

HE
andZ

HH
de-

note the contributions of the equivalent electric and magnetic
sources, respectively, to the magnetic field.
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C. Adaptive Integral Method

If the MoM matrix equation is solved by using an itera-
tive solver, the memory requirement for matrix storage and
computational complexity for computing the matrix vector
multiplication are bothO(N 2) for a N -unknown problem.
Hence for a largeN problem, the computational complexity
and memory requirement are prohibitively high. In order to
apply MoM to solve large scale electromagnetic problems, the
adaptive integral method (AIM) can be used to alleviate the
stringent computing requirements.

The AIM is used to reduce the memory requirement for
matrix storage and to accelerate the matrix-vector multipli-
cation. The basic idea of AIM is to split the matrix-vector
multiplication into two parts:

ZI = ZnearI + ZfarI (10)

whereZnearI andZfarI represent the near-zone interaction
and far-zone interaction, respectively. The far-zone interaction
is approximated using fast Fourier Transform (FFT) and the
near-zone interaction is computed directly using MoM. To
employ AIM, the object is first placed in a rectangular grid
and then recursively sub-divided into smaller grids. Then the
element current densities are projected the surrounding grid
points, which can be achieved by matching the multipole
expanded at the center of element [4]. The projection of the
current densities can be represented by matrixΛ. Thus the
far-zone interaction can be written as

ZfarI = ΛgΛT I (11)

where g is the Green’s function matrix. The matrixg is
Toeplitz and this enable the use of FFT to compute (11)
efficiently. Hence matrix-vector multiplication in (10) can be
represented as

ZI = ZnearI + ΛF−1
{
F {g} · F

{
ΛT I

}}
(12)

whereF andF−1 stand for FFT and inverse FFT, respectively.
The (11) and (12) are used to accelerate the solution of the

problems contain only same type of current densities. However
in the CFVIE, the electric and magnetic current densities are
not directly expanded and used as the unknowns. As shown
in (4), the electric and magnetic current densities are coupled
with the κe and κh, respectively and hence they need to be
projected separately. In this context, two set of projection
matrix Λe andΛh need to be set up for the respectiveκeJV

andκhKV .
The modified AIM procedures for solving the CFVIE can

be summarized as the following:

1) Project the current densities (i.e. J V and KV ) to
surrounding grid points

2) Compute the grid potentials due to these two set of
current densities with the aid of fast Fourier Transform

3) Translate the resultant grid potentials back to the element
4) Replace the inaccurate contribution from near-zone grid

sources with the correct interactions among the elements
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Fig. 1: Bistatic RCS of a complex material sphere of radiusr = 1.0 (εr =
1.6 − j0.8 andµr = 0.8 − j0.2).

3. NUMERICAL RESULTS

In this section, some numerical examples are presented to
demonstrate the applicability of the proposed method for
analyzing large scale electromagnetic scattering of structure
of mixed permittivity and permeability. Throughout the simu-
lation, the grid spacing and near-zone threshold distance used
in AIM are set to 0.1λ0 and 0.15λ0, respectively.

The first example is a sphere of radius 1.0m. The relative
permittivity and permeability of the sphere areεr = 1.6 −
j0.8 andµr = 0.8− j0.2, respectively. The complex material
sphere is modeled by 25 290 tetrahedrons and lead to a total
of 104 016 unknowns. The bistatic RCSs of the sphere are
computed and shown in Fig. 1. The results obtained by using
Mie series are plotted for comparison. It is observed that a
very good agreement between the results obtained by using
our method and Mie series.

The second example we consider is a dielectric sphere
coated with two complex materials as shown in Fig. 2.
The radius of the dielectric core is 0.6m and has a relative
permittivity εr1 = 1.44. The complex relative permittivity and
permeability of the inner coating material areεr2 = 1.5−j0.2
and µr2 = 1.6 − j0.4. While for the outer coating material,
the material property isεr3 = 1.6 − j0.4 and µr3 = 1.5 −
j0.2. The thickness of the each coating material is 0.2m.
The discretization of the sphere results in a total of 55 864
tetrahedrons where 5 791 are the dielectric core, 8 268 and
13 164 are for the respective inner and outer coating layer. The
total number of unknowns of this example isN = 100 738.
The bistatic RCSs of the coated sphere are computed and
shown in Fig. 3. The results obtained by using FEM are also
plotted for comparison.

The last example considered is a five-period mixed dielec-
tric/magnetic slab shown in Fig. 4. The parameters of the slab
are k0h = 2.0, h/d = 1.713, W = 6d, d1 = d2 = d/2.
In computing this example, the wavelength of the incident
wave is equal to 4.5m. Each period of the slab comprises one
dielectric and magnetic bars. The relative permittivity of the
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Fig. 2: Geometry of a coated dielectric sphere withεr1 = 1.44,εr2 =
1.5− j0.2 andµr2 = 1.6− j0.4, εr3 = 1.6− j0.4 andµr3 = 1.5− j0.2
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Fig. 3: Bistatic RCS of a coated dielectric sphere with two coating layers.
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Fig. 4: Geometry of a five-period complex material slab

dielectric bar isεr = 1.44 and the relative permeability of the
magnetic bar isµr = 2.56. The periodic slab is modeled by
using 9 056 tetrahedrons which results in 20 250 unknowns.
The monostatic RCSs inXZ-plane are shown in Fig. 5. We
also compute the RCSs of a piecewise homogeneous dielectric
slab and a piecewise homogeneous magnetic slab of the same
size as the periodic slab and shown in the Fig. 5.

4. CONCLUSION

In this paper, an efficient method based on the combined field
volume integral method is presented for solving the scattering
problems of object with arbitrary permittivity and permeabil-
ity. This method includes the interaction between dielectric
and magnetic properties in the object, and is applicable to
model arbitrarily shaped object. The resultant integral equation
is subsequently converted into a matrix equation by using
method of moments. Adaptive integral method (AIM) has
been implemented in the method of moments to reduce the
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Fig. 5: Monostatic RCS of a five periodic slab withk0h = 2.0 and different
material properties. Case 1:εr1 = 1.44, µr2 = 2.56; Case 2:εr1 = 1.44,
εr1 = 1.44; Case 3:µr1 = 2.56, µr2 = 2.56.

memory for matrix storage and CPU time for matrix-vector
multiplication in iterative solver. Three examples have been
presented in this paper to demonstrate the applicability and
accuracy of the method for scattering problems of electrically
large object with complex material properties.
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