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Abstract

In this paper we attempt fo derive simplified spectral expres-
sions for plane-wave scattering from a haf-plate by investi-
gating the analytical behavior cf the rigorous Wiener-Hopf
(WH) solutions numerically. We show how the WH solutions
depend on the incident angle and thickness cf the haif-plate,
and we compare the proposed approximate solutions with the
WH solutions to check the accuracy ¢f the approximate expres-
stans. It is shown numerically that the proposed solutions are
in good agreement with the WH solutions when the incident
angle is chasen as 6 > 90°.

1. INTRODUCTION

The two-dimensional (2D) plane wave scattering by a thick
conducting half-plate is ane of the fundamental electromag-
netic field problems. It includes the influence of reflection
from the faces of the half-plate as well as diffraction at
the wedges aof it. This problem can be salved rigoarously in
spectral domain by applying the WH technique [1]-[3] ta
the 2D wave equation. To abtain the WH solutions in space
domain, however, we need to calculate its Fourier inverse
transformations.

When the half-plane is thin, the scattered field can be
expressed analytically both in spectral and space domains
[1]-[3]. When it is thick, however, the spectral functions
of the scattered fields should be solved in terms of infinite
simultaneous equations [4]. Mareaver, their Fourier inverse
transformations cannat be performed analytically. In this can-
text, the rigarous WH salutions are too complicated for us
to apply them ta practical electromagnetic problems such as
propagation in urban areas. As a result, we attempt ta derive
a simple expression for the same problem by cansidering the
analytical praperties of the WH solutions numerically.

In this paper, we deal with the case of E-wave incidence
facusing an the far fields. In Sec. 2, we first show the rigarous
salutions in spectral domain obtained by applying the WH
technique to the present problem. We investigate numerically
the analytical properties aof the WH salutions focusing an the
effect of the incident angle and the thickness of the half-plate.
It is shown that these properties are well approximated by
a sampling function in case of 6 > 90°. Therefare, we can
derive an approximate expression in spectral domain as shown
in Sec.3.

In order to check the accuracy of the intraduced simple
expression, we compare the numerical results of the present
methad with the WH salations in Sec4. Accarding ta the
numerical examples, it is shown that the results of the simple
expression are in good agreement with the WH solutions in
spectral domain under the condition 6 > 90°.

2. WIENER-HOPF SOLUTIONS

Fig.1 shaws the geametry of the 2D plane wave scattering by a
conducting half-plate. The thickness of the half-plate is 2b and
the incident angle of the plane-wave (E-wave)is (0 < 6 < m).

Now, we define the tatal(t), incident(i) and scattered(s) ficlds
as follows:

(E',H") = (E', H") + (E*, H®) (D

where the leading function of incident wave (E-wave) is
expressed as follows:

i __ —jrxcosO—jrysinb
E,=e ,

@

Half — Plate

(-E)

Fig. 1: Geometry of the problem for a half-plate.



and the Maxwell equations are rewritten as fallows:
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where the time dependence e/“? is assumed and the wave
number in the free space is expressed as follows:

K = wy/€ollo- @)

In arder to abtain the spectral function of the scattered field
based on the WH technique, we use the fallowing Fourier
transformation pair defined by
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where the contour 'c™ is in the common domain “D™ of the
upper U and lower "L’ half-planes as shown in Fig.2. These
domain are constituted by assuming a small loss in the free
space.

The rigarous solutions of scattered field in spectral domain
can be obtained by applying the WH technique after calculat-
ing the complex Fourier transformation of the wave equation
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Fig. 2: Contour ¢ in the common domain D in the (plane.

as fallows:
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where, we omit the calculation of the scattered field in the
—b < y < b because discussions are restricted only ta the
far-field.

In Eqgs.(8) and (9), we rearrange the spectral expressions
into two parts depending on whether it includes the infinite
simultaneous equations ar not. They are defined by use aof
Apm(¢) and Q) 1, (¢) as follows:
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where the upper script "4 denates regularity of the spectral
function in upper half-plane U, the upper scripts ¢ and
s carrespond to even and odd components of the unknown
spectral functions.

The pale of the spectral function is given by (p = kcos6,
and the residues of the unknown spectral functions at the pale
¢ = (p are given in relation to the incidet wave as follows:

Ul (¢) = 2cos(kgb) (12)
U+ (Co) —2j sin(kgb) (13)
ke = \/K2—C2. (14

The caefficients of U/, (¢) at (¢ = —kg,) are determined
by the following infinite simultancous equations:
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The kernel functions G.(¢) and G,(¢) and their factorized
functions are defined as follows [5]:

GolQ) = G (QGF (-0 = Lo,
G.(Q) = GH QG (—¢) = % b (16)
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where
N
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Fourier inverse transformation of the spectral function leads
ta the scattered field in the space domain as fallows:
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In particular, when the thickness of half-plate is zera (thin
half-plane), we have the fallowing famous analytical salution
in spectral domain:
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where, —m < © < 7 and we have assumed the following
change of variables between cartesian expression is defined

by [2]:
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Fourier inverse transform in Eq.(19) can be calculated as
fallows:
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The following Fresnel functions are used in the above
salution Eq.(21), and are define by:

el

eI dy
VT Jx
X >0
F(X) = oXi [, ( ) (22)
1- e 7" du.
VT ) _x
(X <0)

Next, we investigate the analytical properties of the func-
tions Ay, (¢) and Q, ,,({) to intraduce their approximate
salutions in a simplified form. Figs.3 and 4, show the behaviar
of A,(¢) and Q,(¢) at {[—~, k] in case of § <= 90° and
6 > 90°. Figs.5 and 6 show the behavior of these functions
where the thickness of the half-plate is chosen as a parameter.
Other parameters are selected as f = 300M Hz and 6 = 30°
and 150°.

According to these numerical results, we can summarize the
analytical praperties in the following form. First, we describe
the behavior of A, ,,,(¢) as follows:

1) Ay (Q) is characterized by the incident angles 6 <=
90° and 6 > 90°.
2) Ay (¢) is independent on the thickness of the half-
plate.
3) Amplitude of A, ,,(¢) is maximum at ¢/x ~ 0.2.
Second, we describe the behavior of Q, ,,(¢) as follows:

1) Qpm(¢) is also characterized by the incident angles
6 <=90° and § > 90°.

2) In the case of § <= 90°, the amplitude of €, ,,,(¢) is
maximum at ¢/x ~ 0.2, and there is little dependence
an the thickness of a half-plate.

3) In the case of § > 90°, as the incident angle increases,
the amplitude of Q,, ., (¢) is increased at ¢/x.
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4) The maximum amplitude of Q, ,(¢) increases along
with the thickness of a half-plate, but the width of
Q, m(¢) is narrow.

5) Qpm(¢) is analogous to a sampling function.

Now, based on the abave survey of €, ,,(¢) and Ay, (C),
we intraduce simple spectral expressions so as to solve Fourier
inverse transformation easily. In case of § > 90°, as mentioned
abave, 0, ,, () exhibits strangly the reflection and diffraction
caused by the thickness of the half-plane. It seems possible ta
introduce a simple expression for Q,, ,,(¢) invalving infinite
simultaneous equations.

3. APROXIMATION

As shown in Sec.2, the functions A, ,,, (¢) and 2, ,, (¢) defined
by Eqs.(10) and (11) exhibit complicated behaviors depending
on the incident angle 0 and the thickness b of the half-
plane. However, since the function 2, ,,,(¢) resembles to ta
a sampling function in case of § > 90°, we can approximate
the above functions as follows:

Apn(Q) = Ap i (Co) = eTIRoP (23)
N ksin(¢ F )b
Qpm(€) =~ EEION 24)

As a result, the spectral functions of the scattered field given
in Egs.(8) and (9) can be approximated as fallows:
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Now we carry out the Fourier inverse transformation of the
above equations obtain the scattered field in space domain;
we use the Fresnel function for the first terms in Eqs.(24)
and (25), and we apply the saddle point method to the secand
terms [6]. Then, an approximate expression for the scattered
ficld in space domain is given by
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4. NUMERICAL EXAMPLES

We show some numerical results of the present method in
comparison with the WH solutions in order ta check the
accuracy of the simple expressions. Figs.7 and § show the
amplitudes of the scattered far fields in case of § > 90°.
In these mumerical examples, parameters are chasen as the
incident angle is 6 = 120° and 145°, and thickness of the
half-plate is b = 10.1\ and 30.1\. When the incident angle
is 0 = 145°, the approximate solutions are in good agreement
with the WH salutions, even if the thickness af the half-plate
is changed from b = 10.1\ to b = 30.1\. However, when the
incident angle is # = 120°, the amplitude of the main lobe
af the present methad is much larger than the WH salution,
although the width of the main labes are in good agreement.
This property is also shown for another incident angles in case
af 6 > 90°.

5. CONCI.USION

In this paper we have dealt with the plane wave scattering
by a thick half-plane, and we have attempted to introduce
an approximate salution in a simple form by rearranging the
rigarous spectral function obtained by the WH technique.
Approximations have been made in the spectral domain,
and the Fourier inverse transformations have been performed
analytically. In case of § > 90°, it is shown that the function
Q,(¢), that includes infinite simultaneous equation, can be
approximated by a sampling function. The numerical results
of the approximate salution have been compared with the WH
salutions.

According to the numerical examples, the approximate
salutions are in goad agreement with the WH salutions in case
af § > 90°. In ather cases, however, satisfactory agreements
were not obtained. To avercome this disagreement is ta deserve
as a future problem.
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Fig. 3: The characteristic of Ay (¢) depend on the incident angle (a0 <=
90°(9 = 10°,30°,50°,70° and 90°), (1§ > 90°(9 = 110°, 130°, 150°
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Fig. 4: The characteristic of Q,(¢) depend on the incident angle (a0 <=
90°(8 = 10°,30°,50°,70° and 90°), (0¥ > 90°(9 = 110°, 130°, 150°
and 170°71 (WH solutions].
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