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Abstract 
 
The time-domain uniform asymptotic solution (TD-UAS) for the 
transient scattered field excited by the high-frequency (HF) pulse 
wave incident on a cylindrically curved open surface with a varying 
radius of curvature is presented in this paper. The TD-UAS, effective 
in the transition regions including the geometrical boundaries RB 
and SB, is constructed by the geometrical rays, the surface 
diffracted rays, the lowest order adiabatic whispering gallery mode 
radiation fields, and the combination of these pulse waves. The 
TD-UAS has an advantage that the total solution can be obtained 
from the summation of the individual solution which can easily be 
interpreted physically. We have confirmed the accuracy and the 
validity of the TD-UAS by comparing with the reference solution 
calculated from the combination of the method of moment (MoM) 
and the fast Fourier transform (FFT) code and with the reference 
solution obtained from the combination of the frequency-domain 
UAS and the FFT code. 
 

1. INTRODUCTION 
 
Recently, by the technological advances in high-resolution 
radar and electromagnetic pulses (EMP), it has become 
important to study the transient electromagnetic field radiated 
by an antenna or the transient scattered field produced by 
various objects [1], [2]. In the high-frequency (HF) analysis of 
the scattered field by an object with a complex shape, it is 
necessary to study the analysis method by an object with a 
relatively simple shape or the analysis method for the 
canonical problem [3]-[5]. 

The purpose of this paper is to derive the time-domain 
uniform asymptotic solution (TD-UAS) for the transient 
scattered field when the HF pulse wave is incident on a 
cylindrically curved open conducting surface with a varying 
radius of curvature. The accuracy and the validity of the 
TD-UAS proposed here are confirmed by comparing with the 
reference solutions calculated numerically from the 
combination of the frequency-domain (FD) numerical solution 

obtained from the method of moment (MoM) [6], [7] and the 
fast Fourier transform (FFT) code and from the combination 
of the frequency-domain uniform asymptotic solution (FD- 
UAS) [8] and the FFT code. 
 

2. FORMULATION 
 
Fig.1 shows the cylindrically curved open conducting surface  
with varying radius of curvature, the curved coordinate system 

, the rectangular coordinate system , and the 
coordinate system 

),( qs ),,( zyx
),(R . The origin of coordinate system 

 is chosen to coincide with the vertex point  of the 
curved surface 

),,( zyx O
. Note that s  and q  in the coordinate system 

 are the distance along the curved surface measured from the 
point  and the vertical distance from the curved surface, 
respectively. 

),( qs
O

We assume that the radius of curvature  is sufficiently 
larger than the wavelength 

)(sa
)2( c  (  and  are the  c

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.1 Cylindrically curved open conducting surface  with varying radius 
of curvature, coordinate systems , , and ),,( zyx ),( qs ),(R . : 
straight edges, Q : magnetic line source, : observation point. Also 
shown are edge diffracted ray (ED), creeping wave (CW), and mth order 
adiabatic WG mode (AWG

B,A
P

m) excited by the geometrical ray  
incident on the edge . 
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Fig.2 Single and double edge diffracted rays (single and double-ED), edge- 
surface diffracted rays (edge-SD) excited either by the edge  or both by 
the edges  and . Also shown are geometrical rays (GO) including 
direct ray and reflected ray, and SD excited on the convex side by source 

. 

A
A B

Q
 
radian frequency and the speed of light, respectively) i.e., 

1)( csa , and the source  and the observation point Q
),(P R  are located sufficiently away from the curved surface. 

When the cylindrical wave emanated from the source  
is incident on the edge  of the curved surface , the edge 
diffracted ray (ED), the creeping wave (CW), and the lower 
order mth order adiabatic WG mode (AWG

Q
A

m) [9], [10] are 
excited in the respective regions (see Fig.1). These waves 
excited at the edge  propagate toward the edge  
direction and become new incident waves on the edge  
(see Fig.1). Fig.2 shows geometrically the scattering 
phenomena when the cylindrical wave is incident on the 
convex side of a cylindrically curved open conducting surface 

 with two edges  and . 

A B
B

A B
The transient scattered field solution ))((),,( tytRy  

can be obtained from the inverse Fourier transform of the 
product of the FD scattered field ))((),,( dd uRu  and 
the frequency spectrum )(S  of the source function  as 
follows 

)(ts

.)exp()()(
2
1)( dtiSuty d             (1) 

We will apply the Gaussian-type modulated pulse source  
given by [2], [11], [12] 

)(ts

})4()()(exp{

)2()()(
22

000

0 }{
dtttti

ttUtUts
           (2) 

where  is the unit step function and )(U 0  is the central  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.3 Gaussian-type modulated pulse source. (a) Real part of  in (2) 
with numerical parameters: , , and 

 (b) Frequency spectrum 
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radian frequency modulating the pulse, and  and  the 
constant parameters. The frequency spectrum 

0t d
)(S  obtained 

by the Fourier transform of the source function  is given 
by 

)(ts

][}{ )(erfRe)(exp2)( 2
0

2
0 dtidS   (3) 

)()2()( 00 iddt                      (3a) 

where  denotes the real part of . Fig.3 illustrates the 
source function  and its spectrum 

][Re ][
)(ts )(S . The main portion of 

the frequency spectrum )(S  is distributed in the HF domain 
approximately from 1  to 2 , so that the integration 
interval in the inverse Fourier transform (1) can be changed from 

),(  to ),( 21  (see Fig.3). Then, the FD scattered field 
)(du in (1) can be evaluated asymptotically under the HF 

assumption 1)( csa . The FD-UAS )(,asydu  for 
)(du can be represented as follows [8] 

)()()()(~)( ,,2,1,, mWGdddasydd uuuuu     (4) 

where )(1,du  denotes the geometrical rays (GO) including the 
reflected ray and the ED, )(2,du  the surface diffracted ray (SD) 
including the edge-SD, and )(,, mWGdu  the AWGm radiation 
fields (see Fig.2). 

After substituting the )(,asydu  in (4) into )(du  in (1), the 
integral  can be evaluated by applying the HF asymptotic 
analysis methods in 3. While, substituting the FD-numerical 
solution 

)(ty

)(MoM,du  obtained from the MoM into )(du  in (1), 
one may obtain the numerical solution  by applying 
the FFT code. The numerical solution  thus obtained 
serves as the reference solution in 4. 
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3. TIME –DOMAIN UNIFORM ASYMPTOTIC SOLUTION 
 
3.1 Uniform Asymptotic Analysis by Saddle Point Technique 
In this section, we will derive the TD-UAS for the GO and the SD. 
First, let’s take the single-ED (see Fig.4), emanated from the edge 

 and arriving at the observation point  after reflecting once 
on the concave boundary, as a simple and good example of 
A 4P

)(1,du . Then the )(1,du  can be represented as follows [8] 

)2RPexp()(P(R)

)AR(),,()A()(

44

AAA1,

iikdAdA

GDGu in
d Q

          (5) 

where  denotes the 2-D Green’s function )(xG

)4exp(2
4

)( icxixcixG                (6) 

and  denotes the propagation distance of the ray 
traveling from the point  to the point  (Henceforth, 
the distance between the point  and  is indicated by ). 

 is the edge diffraction coefficient for the 
observation angle 

(AR)AQ
(A)Q (R)A

Q A AQ
),,( AAA

inD
A  and the incident angle  and is given 

by 

in
A

2
cos

)(

2
cos

)(),,(
AAAA
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r

in

i
in XFXFD         (7) 

X
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Fig.4 Single edge diffracted ray (single-ED) reflecting once on the concave 
boundary after the diffraction by the edge A and the edge surface diffracted 
ray (edge-SD). 

in

in

a
a

A

A

cos)A(A2
cos)A(A

Q
Q                          (7d) 

In (5), 44 FPRF)P()R( dAdA  denotes the divergence 
coefficient,  and are the ray tube cross sections at )R(dA )P( 4dA
R  and  (see Fig.4), respectively. 4P )FPRF(RP 44  is the 
propagation distance from the reflection point R  to . 4P

)2(  phase shift arises from the caustic .  is given as 
follows 

F RF

i

i

a
a

R

R

cos)R(AR2
cos)R(ARRF                            (8) 

where  and  denote the incident angle and the radius of 
curvature at the point 

i
R )R(a

R , respectively. 
The geometrical ray )(1,du  in (5) can be expressed by 

)exp()()( 111, cLiAud                        (9) 

41 PRAQL                            (9a) 
where )(1A is the slowly varying amplitude as the function of 

 and  denotes the propagation distance (see Fig.4) which is 
independent of 

1L
. 

Next, as an example of )(2,du , we will consider the edge-SD 
propagating along the convex surface after the diffraction by the 
edge  (see Fig.4). This may be represented as [8] A

)PA()A(

)A,A(
2

)A(),,()A()(

211

1
1AA2,

GD

TLDGu in
d Q

  (10) 

)12exp()2)A(()2()A( 6121 icaL         (10a) 

1A

A1111 ),)2(exp()A,A( tdciT     (10b) 

1A

A1 )(
)()6exp( td

ta
tMi                  (10c) 

)(
)12exp()2()A(2)A( 61

11 Ai
icaD          (10d) 

where )cos)A(( ka denotes the eigen value of the th 
order CW satisfying the characteristic equation 0))A(()1( kaH . 
The notations , , and  are the 
launching coefficient from the edge , the transmission coefficient 
from the edge  to the surface diffraction point , and the 
surface diffraction coefficient at , respectively (see Fig.4). The 
function 

)A(L )A,A( 1T )A( 1D
A

A 1A
1A

)(Ai  is the Airy function [13]. )(2,du  in (10) may 
be represented by the product of )(2A  and the phase term 
including the total propagation distance  as follows: 2L
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)exp()()( 222, cLiAud                      (11) 

PAA 12 QL                         (11a) 
The notation  is used to indicate the CW propagation 
from  to  along the arc of the curved surface . 

1AA
A 1A

Substituting 2,1),(, ju jd , in (9) or (11) and )(S in (3) 
into the inverse Fourier transform in (1) yields the following TD- 
integral representation 

2,1),()()( jIcLtsdty jjj             (12) 

dh

derfdA
d

I

j

jj

)](exp[

)])2((Re[))2((
2

1)( 2

1

22
2   (12a) 

2
00 )()()( cLttih jj            (12b) 

.2,)4(1 0
2

0
2 dd                      (12c) 

In obtaining the above representations from (1), the 
transformation from  to  via  has been 
performed. Note that . 

22d
2,1

2
2,1 2d

   For the large value of )1( , the integral )(jI  in 
(12a) can be evaluated asymptotically by applying the saddle 
point technique [11], [12], [14]. The result is given by 

2
,

2
,

2
Re

2
~)(

d
erf

d
A

d
I sjsj

jj              (13) 

where sj ,  is the saddle point : 

)( 00, cLtti jsj                       (13a) 

in the complex -plane determined from the saddle point 
equation 0)()( jh . Then substituting (13) into 
(12), the TD-UAS for the GO ( j=1) and the SD ( j=2) may be 
represented by 

)()](Re[)()( ,, cLtserfAty jsjsjjj         (14) 

.)2()()2( 2
00

2
,, dcLttid jsjsj       (14a) 

It is shown in (14) that the transient scattered field propagates 
with the phase velocity  and is observed after the total 
propagation time 

c
cL j . 

 
3.2 Uniform Asymptotic Analysis by Fourier Transform Method 
The solution )(,, mWGdu  in (4) for the mth order AWGm radiation 
field from aperture plane at the edge  can be inferred from the 
result given in [8], [9], [11] and be represented as fofflows 

B

)()()P()( ,,,, dmgommWGd uuUu                (15) 

))(exp()(
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i
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)RT()T()R( 33, GMG meq
i
m                        (15d) 
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31)c)A(()A(,)(4 aMAiiK mmm      (15g) 

).BP(),,()B()P( BBB GDuG ini
m

d
m               (15h) 

Where  and )A(QG ),,(A inm wwD  are the incident GO 
(see (6)) and the edge diffraction coefficient (see (7)), 
respectively, and )(, gomG  denotes the GO converted from 
the incident modal ray  and arriving at the 
observation point . Therefore, 

)R(i
mG

P )(, gomu  in (15a) denotes 
the GO (single-ED), converted from AWGm and arriving at the 
observation point  located in the illuminated region 
between  and , with the total propagation  

P
WGRB WGSB

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.5 AWGm radiation field from the aperture plane at the edge . The 
solution observed at  can be represented by the combination of 
geometrical ray (single-ED) and the edge diffracted ray (double-ED). 
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distance P)RTTA()( 31, QgomL  While, 
)(, dmu  in (15b) denotes the edge diffracted ray 

(double-ED), excited by the incident modal ray , with 
the total propagation distance 

)B(i
mG

)(, dmL 1TA( Q  
(see Fig.5). The notation  denotes 

the AWG
BT4 P 43,1 TT

m propagation from  to  along the arc of 
modal caustic defined by 

0T 43,T
31)2)(()()( sasaqq mm  

.)( 32c  Note that the total propagation distance ),(, jmL  
 or , changes as the function of goj dj . 
)P(U  in (15) is “one” when the observation point is 

located in the illuminated region and “zero” when it is in the 
shadow region. Substituting )(, jmu  in (15a) and (15b) and 

)(S  in (3) into (1) yields the following TD-integral 
representation for the AWGm radiation field [11] 

.or

,}])({exp[)()(
2
1)( ,,,

djgoj

dcLtiSAty jmjmjm     

(16) 

            

Since the total propagation distance )(, jmL  changes as the 
function of , it may be difficult to evaluate the integral  
asymptotically by applying the saddle point technique. So, we will 
newly derive the uniform asymptotic solution, from the integral (16), 
by applying the Fourier transform method [11], [12]. 

)(, ty jm

The pulse source function  defined by (2) can be 
represented as follows 

)(ts

)()](exp[)( 00 tpttits                     (17a) 

].)4()(exp[)( 22
0 dtttp                    (17b) 

Denoting the Fourier transform of  by )(tp )(P , the 
frequency spectrum )(S  in (3) can be represented as 
follows. 

)()exp()( 000 PtiS                   (18) 

)]}([Re{)exp(2)( 0
22

0 erfdtidP  (19) 

Substituting (18) into (16) and evaluating the integral  
in (16) by applying the Fourier transform method produce 

)(, ty jm

])4())((

))((exp[)()(
22

,,0,0

0,000,,

dvLtt

cLttiAty

jmgjm

jmjmjm
  (20) 

.)()(1 )( 0,0,0,, jmjmjmg LLcv           (20a) 

It is shown in (20) that the transient pulse wave for the AWGm 
radiation field propagates with the phase velocity  and the 
group velocity 

c

jmg ,,  given by (20a). 
 

4. NUMERICAL RESULTS AND DISCUSSIONS 
 
   In this section, we perform the numerical calculations 
necessary to assess the accuracy and the validity of the TD- 

UAS derived in 3, and to interpret physically the phenomena 
of the transient scattered field. The pulse plane wave shown in 
Fig.3 is incident on the convex side of the cylindrically curved 
open surface  (see Fig.6) defined by 

010 ||,)||(1)( sssaasa                   (21) 

where  are constant parameters and  the arc 
length from the vertex point  to the edge A or B. 

),( 10 aa 0s
O

Fig.7(a) shows the real part of response waveform vs. time 
curves observed at  (see Fig.1) when the 
pulse plane wave  is incident on the convex side of the 
curved surface 

)100,8.0(),( mR
)(ts

 with the parameters )10,10(),( 10 aa and  

0s .096.0 The open circles ( : ) are the 
numerical reference solution. The solid curve (    : 

) shows the numerical result obtained from the 
combination of the FD-UAS 

)FFT(MOMy

)FFT(asyy
)(,asydu  in (4) and the FFT 

code (see (1)). The solid curve agrees excellently with the 
reference solution in the whole region. 

Although  produces the numerical solution for 
the transient scattered field, it is difficult to separate each pulse 
individually from the total response waveform. While, 

 may be separated easily into each pulse, so that we 
shall use  as a new reference solution to assess the 
TD-UAS derived in 3 (see (14) and (20)). Fig.7(b) shows the 
pulses constituting the total response waveform in Fig.7(a). 
The closed circles (

)FFT(MoMy

)FFT(asyy
)FFT(asyy

) show the result of each TD-UAS 
(see Fig.6). Reflected ray (  ), single-ED (   ,   ), double 
-ED (   ~   ), edge-SD (  ), and AWG1 radiation fields 
(   and   ) agree very well with the new reference solution 
shown by the solid curve (     ). 

2 31 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.6 Scattered field observed at the point P.    : reflected ray,   
and   : single-ED,   ~   : double-ED,   : edge-SD,   and   : 
AWG1 radiation fields. 
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Fig.7 Total response waveform (Fig.7(a)) scattered by cylindrically 
curved open conducting surface and each pulse elements (Fig.7(b)). 
Numerical parameters: and ,096.0),10,10(),( 010 saa ),(R  

. )100,8.0( m
 
 

5. CONCLUSION 
 
We have derived the time-domain uniform asymptotic 
solution (TD-UAS) for the transient scattered field by the 
cylindrically curved open conducting surface with a varying 
radius of curvature. The TD-UAS consists of the geometrical 
rays including the reflected rays and the edge diffracted rays, 
the surface diffracted rays, and the lowest order WG mode 
radiation fields, and the combination of these pulse waves. 
The accuracy and the validity of the TD-UAS proposed here 
have been confirmed by comparing with the numerical 
reference solutions obtained from (i) the combination of the 
method of moment and the FFT code and (ii) the combination 
of the frequency-domain uniform asymptotic solution and the 

FFT code. It has been shown that the TD-UAS is effective for 
physical interpretation of the scattered field since the pulses 
constituting the response waveform are observed separately. 
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