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1. Introduction  
 
The constant demand for increased capacity of communication channels has led the SATCOM 
industry to develop new satellite systems operating at frequencies above 20 GHz where large 
bandwidths are available (EHF band – Extremely High Frequencies). Nevertheless, attenuation effects 
of atmospheric gases, clouds and rain can reach significant levels at these frequencies and it is no 
longer cost-effective to use a fixed power margin.  
Rain attenuation, due to scattering and absorption by water droplets, is the major limitation for 
satellites links in the EHF band. As rain events have a very restricted extension in time and space, 
various adaptive Fade Mitigation Techniques (FMT) have been developed to make communications at 
these frequencies possible. Whatever the FMT used, short-term prediction of rain attenuation is 
necessary to track the propagation channel variations and trigger power compensation only when 
needed. Typically, the forecast interval is 10 seconds, corresponding to the control loop reaction time.  
Unfortunately, rain attenuation behaves almost like a random walk (Brownian motion) and existing 
prediction models do hardly better than considering that the process remains constant over the forecast 
interval. Nevertheless, as rain attenuation time series show periods with high ‘volatility’ or strong 
variations, its statistics are similar to some stocks and currency exchange rates, therefore suggesting 
that the use of models originally developed for financial applications might be appropriate [1].  
 
 

2. Measurements 
 
A database was created from OLYMPUS 20 GHz satellite beacon data measured at Gometz-la-Ville, 
France, during 15 months at an elevation angle of 30°. The data were recorded at a sampling 
frequency of 100 Hz and averaged over 1 second intervals. 67 attenuation events were selected, which 
represent a total of 550 hours, including at least 57 hours of rainfall (the criterion being that the 
attenuation level exceeds a threshold of 1.5 dB).  
 
 

3. TARIMA-GARCH prediction Model  
 
Following the theory of time series analysis, the study of attenuation and its autocorrelation has led us 
to describe it as a TARIMA process (Threshold Auto Regressive Integrated Moving Average). First, a 
threshold of 1.5 dB separates situations with and without rain. Then the attenuation time series is 
differentiated to obtain a first-order stationary process that can be approximated by a classical ARMA 
model. The identification procedure yielded to the following equations: 
 

1t-tt
-XXY =  

 

∑∑
=

−

=

− ++=
2

1

2

1

..
i

itit

i

itit
bYaY εε     

 

Proceedings of ISAP2007, Niigata, Japan

ISBN: 978-4-88552-223-9 C3055©IEICE 474

2D2-4



Where Xt is the attenuation at time t (Figure 1.a), Yt, the differentiated process and εt the prediction 
error made by the ARMA predictor (Figure 1.b). The four parameters are estimated by minimizing a 
robustified quadratic prediction error criterion [2]. 
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Figure 1: Rain event occurring on 30th June 1992 
    a OLYMPUS 20 GHz beacon attenuation Xt 
    b TARIMA prediction error εt 
    c GARCH normalized prediction error ηt 

 
 
The periods of large variations of εt (Figure 1.b) indicates that the prediction error variance σ2

t is not 
constant and could be optimized by an appropriate time-varying model. The fact that the prediction 
error distribution has a high Kurtosis (equal to 6) compared to the normal distribution (Figure 2.a) 
confirms that the linear ARMA predictor is not able to model the second-order non-stationarity of the 
process. Since it was found that the autocorrelation of ε2

t is significant over 10 seconds time-lags, a 
non-linear GARCH model (Generalized Auto Regressive Conditional Heteroskedasticity) was selected 
to describe σ2

t [1] :  
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where ηt is the normalized prediction error and σt the conditional standard deviation of εt. The 
GARCH parameters K, α and β are estimated by maximum likelihood. Analyzing the normalized 
prediction error ηt shows that it is a second-order stationary process (Figure 1.c) with a Gaussian 
distribution (Figure 2.b). Moreover it was found that ηt is an uncorrelated process, which allows us to 
conclude that ηt is a second-order Gaussian white noise, and consequently that the prediction error 
variance has been successfully modelled. Thus, the GARCH model can be use to predict in real time 
σ2

t and compute the adaptative error margin that has to be added to the TARIMA prediction to reach a 
required link availability.  
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Figure 2: Comparison with the Gaussian distribution 
  a pdf of TARIMA prediction error εt 
  b pdf of GARCH normalized prediction error ηt 

 
 

4. Comparison and results:  
 
A comparison has been performed with three other models and a forecast interval set at 10 seconds. 
The simplest model, called ‘persistence’, relies on the assumption that the attenuation level remains 
constant over the forecast interval and adds a fixed error margin corresponding to the required 
availability.  
We also implemented the Van de Kamp model based on a ‘two-samples’ Markov chain with an error 
margin depending on the attenuation level [3]. This model is presented with a 0.1 Hz cutoff frequency 
filtering to remove scintillations. However, this preprocessing is not suitable in real time because the 
causal filter's phase shifting effect lowers the model's performance. For this reason, filtering is used to 
determine the parameters, given in [3], but not in the real time comparison. 
Finally, the TARIMA-GARCH model is compared with the ARMA(3,3) model, as proposed by 
Grémont [4], whose parameters are updated in real time by a RLS algorithm. This model assumes that 
the prediction error corresponds to a scintillation process, whose variance is known to be constant over 
short periods of time (up to 1 min). Thus, the error margin is adapted according to a real time 
estimation of the error standard deviation over the past 60 seconds.  
The link availability is conventionally defined as the percentage of time during which the measured 
attenuation level does not exceed the power margin. In order to compare the models for a given 
availability, a ‘mean cost’, C, is defined in dB, as the mean overestimation of the measured attenuation 
level by the power margin: 
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The power margin PMt is the predicted attenuation level 
t

X̂  plus the corresponding error margin 
t

M̂  :  
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The ‘mean cost’, C, corresponds to the unnecessary part of the power margin that does not compensate 
for any channel attenuation.  
 
The results can be influenced by the clear sky time percentage in the database because the presented 
models behave differently according to the meteorological situation. Therefore, to provide a 
comparison that is independent from the database composition, the cost / availability relationships 
given in Figure 3 are computed only over the rainy part of the database. The comparison shows that 
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the TARIMA-GARCH model reduces the ‘mean cost’ by 20% for a required availability of 99% 
during rain events. 
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Fig. 3  ‘Cost / availability’ performances of the models 

———  persistence 
...........   adaptative ARMA(3,3) 
- - - - -   ‘two samples’ model 
- . - . -    TARIMA-GARCH 

 
 

5. Conclusion 
 
The short-term modeling of the prediction error variance allows the TARIMA-GARCH model to 
outperform the existing models with respect to the optimization of the power margin used in FMTs. 
This result can be explained by the fact that the prediction error contains not only scintillations, but 
also a fast fluctuating rain attenuation component that can not be modeled by linear prediction 
methods. Therefore the prediction error variance can not be supposed constant over 60 seconds 
intervals as proposed in the Grémont model. The error margin used in the ‘two samples’ model is also 
limited because it depends only on the attenuation level and does not take into account the 
autocorrelation of the prediction error variance. Future work will focus on the estimation of the 
frequency scaling factor needed in an Uplink Power Control FMT in which the prediction has to be 
made from a given frequency to a higher one.   
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