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Abstract 
In reconfigurable phased array radars beamforming is 

performed in the digital domain. Digital implementation 
can be carried out using finite precision and infinite 
precision representation of the phased array signal. We 
consider finite precision representation, since it takes 
considerably less implementation resources compared with 
the infinite case.  In this paper we analyze quantization 
effects when quantization is introduced in the phasing 
network. The quantization problem is extensively addressed 
in the literature for phased array radars. But it mainly 
focuses on steering weights and delay quantization in a 
long phased array. For reconfigurable digital beamforming 
(DBF), it is possible to store all the phasing samples and 
process them in real time. Therefore the quantization issue 
is different than digitizing a few phasing samples. 

 Digital samples of phased signals are sensitive to finite 
precision. Finite precision reduces mainlobe level as well 
as sidelobe gain. For multiple beam generation, it degrades 
not only the transmitted beam but adjacent beams as well. 
The quantization effects depend on position of the 
quantizer. They are different when the quantizer is placed 
before and after beamforming network. Simulations have 
been performed to demonstrate the results.  
1 Introduction 

Quantization is a representation of data samples with 
certain number of bits per sample after rounding to a 
suitable level of precision. Quantization errors in a DBF 
system can be introduced from three sources; one source is 
input quantization, a second is coefficient quantization and 
the third is the finite precision in arithmetic operations [1]. 
The quantization error in the arithmetic operations can be 
controlled by carefully selecting the size of buffer registers 
according to the input word length [2]. We address 
quantization issue resulting from fixed word length 
coefficients. Quantization errors from phasing network of 
an ionospheric radar are topic of this article. Tasman 
International Geospace Environment Radar (TIGER) is an 
HF radar that investigates ionospheric irregularities in the 
Southern Hemisphere. Recently a second component of the 

TIGER is commissioned in New Zealand to acquire higher 
resolution. 

This article is divided into two main sections; 
quantization effects for DBF before and after phasing 
network. The HF radar comprises phasing array of sixteen 
antenna elements with modulating frequency range of 8 to 
20MHz. The radar antenna geometry is described in section 
2. Fixed length samples cause periodic phase quantization 
error. We discuss finite precision effects on phasing weights 
in section 3. Quantization problem in phasing networks is 
significantly addressed in the literature, for example [3]-[7]. 
Most of the analysis is limited to arrays where steering 
weights are quantized. In other words beam patterns are 
calculated using infinite precision and quantization error is 
modeled after the beamforming network. We discuss effects 
of quantization in such situation in section 4. In section 5, 
quantization effects are discussed when quantization is 
introduced before beamforming. This is recent issue in 
digital beamforming where beam width, directivity and 
accuracy can be changed on the fly. Examples of such DBF 
systems are reconfigurable transmitters and receivers in 
wireless environment. In the last section conclusions are 
drawn. 

 
2 HF Radar Antenna Geometry    

The phasing of signals extends the transmission or 
detection range of a transmitter or receiver by forming a 
narrower beam than the individual antennas. Phased array 
antennas are used to steer a narrow beam over an arc from a 
fixed antenna array. For each transmitter or receiver the 
direction is adjusted with systematic phase delays to each of 
the antennas in the array. In the linear phased array antenna 
the antenna elements are arranged with uniform spacing, as 
shown in Figure 1, where d  is inter-element spacing, and 
θ  is angle normal to modulated wave. It is obvious from 
the figure that in the general case, the modulated wave at 
element 1−N  will be delayed by a differential distance of 

θsind  compared with a wave at element 2−N . If we 
consider the phase of the transmitted signal is zero at the 
origin, then the phase lead at element N  to that element at 
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origin is θsinNkd , where λπ2=k  is a constant. The 
operational frequency of the signal varies with the 
wavelength using the relationship λfc = , where c  is the 
velocity of light in the vacuum. The number of array 
elements and space between them determine the beamwidth 
and size of sidelobes [3] 

 

Figure 1 TIGER phased array antenna geometry. 

 
3 Periodic Phase Quantization   

One source of periodic phase quantization is uniform 
array structure. Uniform distances between the array 
elements produce periodic phase quantization when they are 
steered to certain directions. The periodic quantization error 
is also caused by factors other than the regular geometry. 
For example continuous wave transmission and far field 
operation. In TIGER phased array system, pulsed 
transmission is employed therefore the quantization error 
would be reduced because overlapping pulses are reduced 
compared with continuous transmission [3]. 

In digital beamforming, weighting coefficients are 
quantized using a suitable quantizer. For a q  bit quantizer, 

minimum step size of phase shifter is q2π . In other words 

the quantization error is distributed between q2π−  to 
q2π . Variance of phase quantization error can be written 

as assuming qC 2π= for interval of [-C C] [6] 
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The above expression shows that variance decreases with 
increase in precision level of quantizer. 

 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2 Comparison of ideal and digital phase shifter for two bits (b) 
periodic quantization error when the phase shift in each array element is 
quantized by the two bit quantizer. 

Digital phase shifters are employed in digital 
implementation of phased array beamforming. The size of 
the phase shifter plays important role in beam accuracy and 
is dependent on the number of precision levels used in the 
phase increments [5]. For reduced number of bits, the 
digital phase shifter coarsely approximate the analog phase 
shifter as shown in the Figure 2. For higher number of bits, 
the approximation is close to the ideal phase shifting. 

 
The periodic quantization error depends on step size of 

the quantizer. For two bit quantizer, the step size is 45 
degrees. It is clear from Figure 2 that the quantization error 
is plus or minus half of the quantization step.  

Periodic phase quantization error is addressed in the 
literature for different applications. In [4] Gray has reported 
quantization error in the beamforming for continuous 
waveform receivers. Gray also suggested interpolation to 
minimize the quantization effects since higher sampling rate 
causes less delay errors. 
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4 Effects of  Quantization  After 

Beamforming Network 

The quantization of infinite precision samples into fixed 
word length degrades the phased signals. As described in 
the previous section, the use of more levels for higher 
precision decreases the quantization error at the expense of 
larger hardware resources. For a reduced precision level, 
quantization error is spread to the main beams and to the 
grating lobes as well. In this section we study effects of 
quantization on beam resolution and associated grating 
lobes.  

Quantization causes different beam patterns when it is 
introduced before beamforming network and after 
beamforming network. We first look at most common form, 
when quantizer is placed after beamforming network, as 
shown in Figure 3. All the phasing calculation is performed 
in the analog domain and reconfigurable computing is 
applied after analog to digital conversion. 
 
 
 
 
 
 
 
 
 
Figure 3 Quantization effects after beamforming network 

In this case beamforming is based on infinite precision 
samples and quantized into suitable quantization levels. 
Beam steering coefficients are processed using FPGA to 
realize reconfigurable beam direction and resolution.  

In order to get deep understanding we develop 
mathematical models for array patterns and grating lobes. 
We can define array factor of a uniform array pointing to a 
direction 0θ  [7] 
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where N  is number of array elements, d is spacing 
between two adjacent elements, λ is wavelength, θ is phase 
change in the array and 0θ is pointing angle. If the nulls of 
the array occur at directions  
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where n  is an integer. Putting equation (4) into (3)  
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Equation (5) can be used to represent beam pattern of a 
uniform array including grating lobes. The largest grating 
lobe occurs when 1=n . 

Now we discuss array factor in case of quantization. If 
the phase progression in the phased array is equal to the 
least quantized bit of the quantizer then  

( )
q

dN

2

2
sinsinnprogressio phase 0

πθθ =−=  (6) 

putting into expression (5) we have 
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Which can be written as 
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We calculate power by approximating numerator angle 
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Equation (9) represents approximate power of quantized 
phased array. This can also be used to approximate grating 
lobe levels resulting from quantization. 

In order to investigate the quantization effects, an 
example is presented with fixed word length phasing 
samples. Amplitude of the phasing vector is quantized into 
six bits; the increased number of bits will reduce the 
quantization effect. For an actual design the fixed bit width 
depends on available hardware resources. The quantized 
beam in Figure 4(a) shows that the quantizer does not 
adequately represent the beam pattern and thus introduces 
quantization noise. As can be seen from this simple 
example, six bit compromises the first and second sidelobes 
at the -20dB level. For a DBF system of more than ten bits, 
the sidelobe level will be essentially unaffected by the 
quantization at the -20dB level.  
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Figure 4 Quantization effects on beam pattern when samples are rounded 
using (a) amplitude quantization and (b) delay and amplitude quantization. 

The quantization causes gain errors in sidelobe levels. 
Higher resolution in quantization introduces lower 
quantization error. The quantization error changes the 
dynamic range of the grating lobes and degrades the 
adjacent beam resolution for multiple beam systems. 
We can also study quantization effects of a slow speed 
analog to digital conversion. An example is shown in 
Figure 4 (b). The quantization effects degrade beam pattern 
even more when both delay and amplitude quantization are 
introduced. The amplitude is quantized to six bits and the 
sampling delay is sixteenth times less than the ideal one. 
The two dimensional scenario causes severe reduction in 
main lobe gain and produces distorted energy in the 
unwanted region of sidelobes.  
 
5 Effects of  Quantization  Before 

Beamforming 

For FPGA implementation of DBF, all weights of the 
DBF are stored in registers. Therefore we look at the issue 
when DBF is performed using such weights. Difference 

with the earlier issue is that now both beam generation and 
steering are based on fixed numbers. This problem has not 
been addressed in the literature partly because technology 
was not advanced enough to handle large amount of 
calculation in the digital domain. 

A block diagram is shown in Figure 5 to realize the 
concept of digitizing the phase samples. In this case 
beamforming calculation is based on rounded integers. As 
mentioned in the section on periodic quantization, the 
periodic quantization is now included in the phase 
calculation. Therefore the digitization error causes higher 
degradation in the beam resolution compared to the 
previous case. 
 
 
 
 
 
 
 
 
 
Figure 5 Quantization effects before beamforming network 

Simulations have been performed to demonstrate the 
amplitude and delay quantization effects on the beam 
pattern. An example is shown in Figure 6 where pashing 
weights are rounded to six bits and sampling is sixteen 
times less the ideal one. A comparison of Figure 6 with 
Figure 4 shows that for identical precision of the quantizer, 
beam pattern exhibit higher periodic error in the latter case. 
The delay quantization components add constructively and 
destructively that causes low fidelity beam pattern. The 
degradation is visible in the dynamic range of the main lobe 
and sidelobes as well.  
 

The output beam resolution is adversely affected when 
the phasing coefficients are quantized before beamforming 
network. In order to circumvent these components, 
precision level of the amplitude and timing quantizer should 
be at adequate level. 
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Figure 6 Quantization effects before beamforming when (a) amplitude 
quantization and (b) both amplitude and delay quantization are introduced. 

 
The potential benefits in reconfigurable beamforming are 
variable beam direction, beam width and accuracy with a 
software flick. On the other hand there are least minimum 
conditions to control phasing components; for example 
amplitude and timing precision should be at adequate 
levels. 
 
 
6 Conclusions   

In this paper, effects of fixed word length have been 
discussed on phasing of the digital TIGER system.  Finite 
precision is described in two scenarios. In first case, 
conventional approach of quantized weights is addressed 
after beamforming. Secondly a new approach of 
quantization before beamforming is adopted. The second 
scenario exhibit sub optimum results since quantization 
error accumulates in beamforming calculations. The 
quantization error is higher for lower precision level. In 
order to overcome these effects, a higher precision level is 
required.  
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