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1. Introduction

Electromagnetic crystals are periodic arrangements of discrete dielectric or metallic objects in
which any electromagnetic wave propagation is forbidden within a fairly large frequency range.
An electromagnetic crystal waveguide may be composed by either introducing a line defect
or chains of defects in an electromagnetic crystal or bounding a space by two pieces of elec-
tromagnetic crystals. The mode propagation in two-dimensional electromagnetic waveguide
has been extensively investigated using various approaches such as the plane wave expansion
method[1], the finite-difference time-domain technique[2], the beam-propagation method[3], the
Lattice sums and T-matrix method[4, 5], and the improved Fourier series method[6]. Most of
the studies concerning guide modes of electromagnetic crystals are focused at dielectric electro-
magnetic crystals. Very few studies can be found in the literature to discuss those of metallic
electromagnetic crystal waveguides.

In this paper, we shall propose a rigorous and simple approach to guide modes of a metallic
electromagnetic crystal waveguide. This method is an extension of an S-matrix and mode-
matching method which has been recently developed[7]to analyze the electromagnetic scattering
characteristics of two-dimensional metallic electromagnetic crystals with arbitrary cross section.
Numerical examples show both of fast convergence and shot computer time. The dispersion
characteristics and field distributions are presented for the lowest TM and TE modes.

2. Formulation of Dispersion Equations

Fig.1 shows the side view of a two-dimensional electromagnetic crystal waveguide composed
by metallic rectangular cylinders. The cylindrical elements should be same along each layer
of the arrays but those in difference layers do not need to be same. The background medium
is a homogeneous dielectric with relative permittivity εrb and relative permeability µrb. The
guided waves are assumed to be uniform in the z-direction and vary in the form eiαx in the
x-direction, where α is a propagation constant of guided modes. Since this structure has the
same period in x-direction, all the electromagnetic fields may be expressed by the superposition
of space harmonics {eikxmx}, kxm = α + 2πm

h , which make an orthogonal and complete system.
Therefore, the scattering characteristics are described by the reflection and transmission matrices
based on these space harmonics. If we use the reflection matrices R∪

0 and R∩
0 to be the scattering

properties at the upper and lower boundary plane as viewing from the 0-th region. Then the
downgoing vector a−

0 , which denote the z-component of the electrical fields and the magnetic
fields for TM and TE modes, in the 0-th region as shown in Fig.1 must satisfy the following
equation.

Y 0R
∪
0 Y 0R

∩
0 a−

0 = a−
0 (1)

where Y 0 is a diagonal matrix, whose diagonal elements are eikymd0 , kym =
√

k2
b − k2

m, Im(kym) ≥
0, kb = k0

√
εrbµrb. For nontrivial a−

0 the discrete value αq of α must be a root of the following
equation.

det[Y 0R
∪
0 Y 0R

∩
0 − I] = 0 (2)
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Fig.1 Schematic of a two-dimensional elec-

tromagnetic crystal waveguide consisting

of rectangular metallic cylinders.

h
h

c
c

h
h

c
c

d Guided wave
region

c
c

h

60o 60o

60o 60o

r1

r1

r1

c

h

60o 60o

60o 60o

r1

r1

r1

c

d Guided wave region

(a) Square lattice (b) Regular triangular lattice

Fig.2 Cross section of metallic electromagnetic

crystal waveguides.

The refection matrices R∪
0 and R∩

0 may be obtained by setting R∪
0 = R̃

−
N and R∩

0 = R̃
+
−N , where

matrices R̃
−
N and R̃

+
−N are derived from the following formulas through the N/2 times recursion

process starting with S̃±1 = S±1. Let (R̃
±
j , T̃

±
j be the total reflection and transmission matrices

for the entire system of j-layered arrays. When the (j±2)-th array is stacked with the separation
distance dj±1 upper and lower the j-th array, respectively, the total reflection and transmission
matrices (R̃

±
j±2, T̃

±
j±2 for the (j ± 2)-layered system is calculated by the following relations:

[
R̃

+
j+2 T̃

+
j+2

T̃
−
j+2 R̃

−
j+2

]
=

[
R+

j+2 + F +
j R̃

+
j V jT

−
j+2 F +

j T̃
+
j

F−
j T−

j+2 F−
j R−

j+2V jT̃
+
j + R̃

−
j

]
, j ≥ 1 (3)

[
R̃

+
j−2 T̃

+
j−2

T̃
−
j−2 R̃

−
j−2

]
=

[
R̃

+
j + Z+

j R+
j−2V jT̃

−
j Z+

j T +
j−2

Z−
j T̃

−
j Z−

j R̃
−
j V jT

+
j−2 + R−

j−2

]
, j ≤ −1 (4)

and

F +
j = T +

j+2

(
I − V jR̃

+
j V jR

−
j+2

)−1
V j , F−

j = T̃
−
j V j

(
I − R−

j+2V jR̃
+
j V j

)−1
(5)

Z+
j = T̃

+
j

(
I − V jR

+
j−2V jR̃

−
j

)−1
V j, Z−

j = T−
j−2V j

(
I − R̃

−
j V jR

+
j−2V j

)−1
(6)

The matrices (R±
j , T±

j ) are the reflection and transmission matrices of j-th layer array where
j is an odd number. These matrices can be obtained using mode-matching technique. For the
detail discussion please refers to [7]

[
R+

j T +
j

T−
j R−

j

]
= ±

[
Γ+

j + I Γ−
j

Γ−
j Γ+

j + I

]−1 [
Γ+

j − I Γ−
j

Γ−
j Γ+

j − I

]
(7)

with

Γ+
j =

[
Γ+

j,mn

]
=

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[
kynajµrj

hµrb

∞∑
ν=1

(
1 + e2iγjν tj

)
ξ2
jνGνmn(

1 − e2iγjν tj
)
γjν

]
for TM wave

[
αmkxnεrbaj

hkymεrj

∞∑
ν=0

(
1 + e2iγjν tj

)
γjνGνmn(

1 − e2iγjν tj
)
(1 + δν0)

]
for TE wave

(8)

Γ−
j =

[
Γ−

j,mn

]
=

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[
2kynajµrj

hµrb

∞∑
ν=1

eiγjν tjξ2
jνGj,νmn(

1 − e2iγjν tj
)
γjν

]
for TM wave

[
2αmkxnεrbaj

hkymεrj

∞∑
ν=0

eiγjν tj γjνGj,νmn(
1 − e2iγjν tj

)
(1 + δν0)

]
for TE wave

(9)
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Gj,νmn =
−(−1)νei(kxn−kxm)wj

a2
j(k2

xm − ξ2
jν)(k2

xn − ξ2
jν)

[
(−1)νeikxnaj − e−ikxnaj

] [
(−1)νeikxmaj − e−ikxmaj

]
(10)

ξjν =
νπ

2aj
, γjν =

√
k2

j − ξ2
jν, Im(γjν) ≥ 0, kj = k0

√
εrjµrj (11)

The signs ± in Eq.(7) are corresponding to TM wave and TE wave, respectively.

3. Numerical Examples

We first consider an electromagnetic crystal waveguide consisting of square conductive cylinders
located in free space with square arrangement as shown in Fig.2(a). Fig.3 shows the dispersion
curves and electrical field distributions of the lowest even and odd TM modes in the metallic
electromagnetic crystal waveguide, where c = 0.2h, d = 1.5h, and the truncated number M
is chosen to be 15 including 31 space harmonics. In Fig.3(a) the solid lines denote the even
modes, the dotted line denotes an odd mode, and the square mark means cutoff point. In these
three modes, only mode 1 locates in the perfect bandgap range, both of mode 2 and mode 3
are in a part bandgap range. The distribution of electric fields are plotted in Fig.3(b)-(d) for
three mode at h/λ0 = 0.4 and 0.7. The corresponding normalized propagation constants are
αh/2π = 0.288769, 0.353135, and 0.427878, respectively. It is found that the electric fields
concentrated around defect region for even modes, whereas, the electric fields are distributed in
a larger region for odd mode. This means that the odd mode is weak mode. It notes that the
present method can calculate all the guided modes, even they is not in perfect bandgap ranges.
Fig.4 shows the dispersion curves and magnetic field distributions of the lowest even and odd
TE modes in the same waveguide discussed in Fig.3. This waveguide has two modes. One is an
even mode. The another one is an odd mode. Their magnetic fields distributions are plotted in
Fig.4(b)-(c), at h/λ0 = 0.8 point and αh/2π = 0.207316 and αh/2π = 0.192617. Since there is
no perfect bandgap for TE polarization case, both two guided modes are in part bandgaps. Fig.5
shows the dispersion curves of another electromagnetic crystal waveguide consisting of metallic
cylinders embedded in dielectric slabs with regular triangular arrangement whose cross section
is shown in Fig.2(b), where c = 0.2h, εr1 = 10, and d = 1.5h. There are four even modes and
no odd mode for TM polarized modes, whereas there is only one odd mode and no even mode.

4. Conclusion

We have proposed a rigorous and simple approach to guide modes of a metallic electromagnetic
crystal waveguide. The method is based on a generalized scattering matrix and mode-matching
technique. The validity of the proposed method has be confirmed by considerable numerical
experiments. The dispersion characteristics and field distributions are presented for the lowest
TM and TE modes of two types of metallic electromagnetic waveguides.
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Fig.3 Dispersion curves and electrical field distributions of the lowest even and odd TM modes in the electro-

magnetic crystal waveguide.
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Fig.4 Dispersion curves and magnetic field distributions of the lowest even and odd TE modes in the electromag-

netic crystal waveguide.
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Fig.5 Dispersion curves of the lowest TM and TE modes in the electromagnetic crystal waveguide consisting of

rectangular conductive cylinders embedded in dielectric slabs.
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