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1. Introduction 
     Photonic bandgap structures [1] in discrete periodic systems have received growing attention 
because of their potential applications to narrow-band filters, high-quality resonant cavities, strongly 
guiding devices and substrates for antennas.  
     In this paper, we present a very accurate and efficient method to investigate a two-dimensional 
electromagnetic scattering from layered periodic arrays of cylindrical objects with the periodic defects 
and the arrays embedded in the dielectric slab. The formulation is based on the Lattice Sums technique 
[2], the T-matrix approach and the generalized reflection and transmission matrices for a layered 
system. The method is quite general and applies to various configurations of two-dimensional periodic 
arrays. The proposed method is used to analyze the influence of the periodic defects on the frequency 
response in reflectance from the multilayered periodic arrays of circular cylinders. Power reflection 
coefficient of different configuration of multilayered periodic arrays of the circular cylinders with 
periodic defects is numerically studied. It could be seen that periodic defects make substantial 
influence on the frequency response in reflectance. They lead to the appearance of a series of stop-
band regions and effect on the location of the stop-bands with perfect reflection.  
 
2. Formulation of the problem 
     A cross section of N-layered periodic arrays of cylindrical objects with the periodic defects situated 
in a background medium with a wave number 0k  is shown in Fig.1. The cylinders are infinitely long 
and parallel to each other.  
  
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.2. Cross section of N-layered periodic arrays of 
cylindrical objects with periodic defects embedded in 
dielectric slab 

Fig.1. Cross section of N-layered periodic 
arrays of cylindrical objects with periodic             
defects in free space           
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The period of the first (third, fifth… 1N − ) layers is h , while the period of the second (forth, 
sixth… N ) layers is assumed to be Ph , where P  is a natural number. The common period of the 
multilayered array of the circular cylinders is Ph . The local origin attached to the j -th layer is shifted 
by jw  along the x -axis from the global origin. The radius and dielectric permittivity of the cylinders 
are a  and ε  respectively. Generally, the cylinders in different layers need not be identical in material 
properties, dimensions or shape. We consider two-dimensional scattering problem for a plane wave, 
whose direction of incidence is normal to the cylinder axis.  
     A plane wave with unit amplitude is incident from the upper half-space 0y > . The wavevector 
forms an angle 0φ  with respect to the x  axis and its x  component is 0 0 0cosxk k φ= . The incident 
plane wave is scattered into a set of Floquet space-harmonics with the x -dependence as xik xe A where 

0 2 /x xk k Phπ= +A A  ( 0, 1, 2,...)= ± ±A . When a single layer of the array is isolated, scattering process 
is described in terms of the reflection and transmission coefficients, which relate the amplitudes of 
reflected and transmitted space harmonics to the amplitude of the incident wave. When the array is 
multilayered or embedded in the dielectric slab, the scattering space harmonics impinging on the 
neighbor arrays as new incident waves and are scattered into another set of space harmonics, which 
impinge back on the original array. A series of this process explains a multiple scattering of wave 
fields in the layered array. To describe the multiple scattering processes, we introduce the reflection 
and transmission matrices for each of the array planes, which relate a set of incident space harmonics 
to a set of reflected and transmitted ones. The results are then used to derive the generalized reflection 
and transmission matrices for the layered structure.  
     Following the same analytical treatment [3] which has been developed for the scattering problem of 
a single layer, the reflection matrix , 1j j+R  and the transmission matrix , 1j j+F  for the incident space 
harmonics downgoing from the regions j  to 1j + are deduced as follows:  
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where U and V are matrices, which transform the m -th order cylindrical wave into the upgoing and 
downgoing plane waves of the A -th space harmonic, respectively, inP  is a matrix, which transforms 
the downgoing n -th space harmonic into the m -th order cylindrical wave and I  is the unit matrix. jT  
is the T-matrix of the isolated single cylinder located at the local origin ( , )j jw d−  on the j -th layer. 
L is Lattice Sums, which is expressed by a semi-infinite series of Hankel functions.To overcome the 
difficulty of a very slow convergence of the series, we use an integral form of the Lattice Sums, which 
can be accurately and efficiently evaluated using a simple scheme of numerical integration [2]. 
     The Lattice Sums and the T-matrix of cylindrical objects play an important role in our formulation. 
The Lattice Sums and related matrix L  characterize uniquely the periodic arrangement of scatterers 
and are independent of the polarization of the incident field and the individual configuration of 
scatterers.  The details of scattering from each array element within a unit cell are described by the T-
matrix. The generalized reflection and transmission matrices or the generalized scattering matrix, 
which characterize the reflection and transmission of the N -layered arrays, are obtained by linking the 
reflection matrices , 1 1,,j j j j+ +R R  and transmission matrices , 1 1,,j j j j+ +F F over the N  layers. We have 
omitted to describe the details of the formulation of generalized reflection and transmission matrices 
due to the limited space, however, please see the reference [3].   
          As the periods of the layers presented in Fig.1 and Fig.2 are h  or Ph , the common period of the 

multilayered array is Ph . For the layers with P h  period, the whole set of space harmonics { }xi k xe A  
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could be divided into P  subsets using the following expression: 

                                                              { }
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Each subset corresponds to the array with a period h  and there is no coupling between plane waves, 
which belong to the different subsets. We have used this formulation in order to study the effect of 
periodic defects on the frequency response in reflectance and transmittance. 
     When the layered periodic arrays of cylindrical objects with the periodic defects are embedded in a 
dielectric slab (Fig.2), a slight modification is required in the previous equations. If the permittivity 
and permeability of the slab are sε  and sµ  respectively, the equations (1)-(3) are changed into the 
following expressions: 

   
2( )

sin

m
im

m
s

iu e
k Ph

θ

θ
 − = =   
 

U A
A

A

,   
2( )

sin

m
im

m
s

i e
k Ph

θυ
θ

− − = =   
 

V A
A

A

 , 0
0

2cos cos
s s

k
k k Ph

πθ φ= +A
A

     (5) 

where s s sk ω ε µ= . The matrices L  and T  are calculated for the background medium with sε  and 

sµ ; θA  is defined taking into account Snell’s law at the slab boundaries. Using those substitutions, we 
can apply the same procedure as that for the layered periodic structures. The generalized reflection and 
transmission matrices for the embedded periodic arrays are obtained by applying the Fresnel reflection 
and transmission matrices to the reflection and transmission of space-harmonic waves at the upper and 
lower boundaries of the dielectric slab.  

3. Numerical results 
     The proposed approach has been used to analyze the reflection and transmission characteristics of 
layered periodic arrays of circular cylinders with the periodic defects. Although a substantial number 
of numerical results could be generated, we discuss here the power reflection coefficient of the 
fundamental space harmonic 0R  in the wavelength range 0 / 1h λ< <  under the normal incidence with 

0
0 90φ = . The numerical results in what follows were obtained with the errors in the energy 

conservation less than 810−  by taking into account the lowest thirteen space harmonics and by 
truncating the cylindrical harmonic expansion at 6m = ±  to calculate the T-matrix of the isolated 
circular cylinders. Distance between the layers of periodic grating is h . In order to study the effect of 
the periodic defects on the frequency response in reflectance, we have calculated the power reflection 
coefficient 0R  for the multilayered identical arrays of the circular cylinders at 2P = , i.e. the period of 
the second (forth, sixth…) layers is 2h . The numerical results have been calculated using the 
following non-dimensional parameters: /a h , 0/ε ε , 0/sε ε .   
     Figure 3 illustrates the dependence of the power reflection coefficient 0R  for the one hundred 
identical layers of the periodic arrays of the dielectric circular cylinders with periodic defects in free 
space as a function of the non-dimensional wavelength /h λ  for TM wave at / 0.2a h = , 0/ 5.0ε ε = , 

0/ 1.0sε ε =  and 0jw = . Figure 4 shows the similar plot for the same multilayered periodic grating 
without periodic defects. It could be seen that periodic defects lead to the appearance of a series of 
stop-band regions and make a substantial influence of the location of the stop-bands with perfect 
reflection. From the figures it follows that the bandwidths of the stop-band become considerably 
narrower than that of the same array without periodic defects, where the stop-band with a wide 
bandwidth at 0.34 / 0.47h λ< < could be observed.  
    Figure 5 illustrates the dependence of the power reflection coefficient 0R  for the three identical 
layers of the dielectric circular cylinders with periodic defects embedded in the dielectric slab versus 
non-dimensional parameter /w h  at the normalized frequency / 0.8h λ = . The periods of the first and 
third layers are h  and the cylinders in the second layer with a period 2h  are shifted by w  along the 
x -axis from the global origin. From the figure it follows that the shift from the global origin makes the                          
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substantial effect on the power reflection coefficient. Two resonance peaks with a broad bandwidth 
appeared at / 0.14w h =  and / 0.3w h =  become to be well separated and a broad-band resonance 
profile is observed, when the parameters of multilayered array are properly chosen. In addition, as an 
example, the power reflection coefficient 0R  for the 12 layered array of the circular air-holes 
embedded in the dielectric slab ( 0 0/ 0.2, / 1.0, / 2.0sa h ε ε ε ε= = = , TE wave) with periodic defects 
(solid line) and without periodic defects (dashed line), when the second (forth, sixth…twelfth) layers 
are shifted by / 2w h=  along the x -axis from the global origin is presented in figure 6.      
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Figure 3. Dependence of 0R  for the one 
hundred identical layers of periodic arrays of 
the dielectric circular cylinders with periodic 
defects in free space versus /h λ .  

0R

/h λ
Figure 4. Same as is Fig.3 for the multilayered 
periodic array without periodic defects.  
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Figure 5. Dependence of 0R  for three 
identical layers of periodic arrays of the 
dielectric circular cylinders with periodic 
defects in dielectric slab versus /w h  at 

/ 0.2a h = , 0/ 12.0ε ε = , 0/ 2.0sε ε =  and  
/ 0.8h λ = , TM wave. 

Figure 6. Power reflection coefficient 0R  for 
12 identical layers of periodic arrays of the 
circular air holes embedded in the dielectric 
slab with periodic defects (solid line) and 
without periodic defects (dashed line) at 

/ 2w h= , TE wave 

0R

/h λ
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