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1. Introduction
The reflection and scattering (or the transmission and scattering) of the cylindrical, spherical, and

beam waves by (or through) a plane dielectric interface and multiple media interfaces have been the
important research subjects for many years and have been studied by many researchers [1]- [8]. Past
studies have shown that the Gaussian beam that is incident from a denser medium and is reflected by a
single and multiple media interfaces does not exactly follow the path of the geometrical optics [1]- [4], [7]
and exhibits the nonspecular effect including lateral shift, longitudinal shift, and angular shift [4].

In this paper, we will derive the asymptotic solutions for the transmitted Gaussian beam through the
plane dielectric interface. The validity and the applicable range of the asymptotic solutions are confirmed
by comparing with the reference solution calculated numerically from the integral representation of the
transmitted Gaussian beam. We will show that, like the reflected Gaussian beam [7], the beam shift is
also appeared in the transmitted Gaussian beam.

2. Formulation and Integral Representation for Gaussian Beam Trans-
mission
Fig.1(a) and Fig.1(b) show the transmission and scattering of the Gaussian beam through the plane

dielectric interface, the Cartesian coordinate systems (x, y, z), and the beam coordinate systems (xi, zi)
and (xt, zt) in the cases that the incident angle of Gaussian beam θb is smaller than the critical angle δ and
θb is larger than the critical angle δ, respectively. We assume that the medium 1 (ε1, μ0) is denser than
the medium 2 (ε2, μ0). We also assume that the incident Gaussian beam polarized in y-direction along
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Figure 1: Schematic figures for transmission of Gaussian beam through a plane dielectric interface and
coordinate systems (x, y, z), (xi, zi), and (xt, zt), δ: critical angle of total reflection θ = δ (δ = sin−1 n), and
θb: incident angle of Gaussian beam.
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Figure 2: Saddle points θs and θe and steepest descent paths SDPθs and SDPθe passing through saddle
point θs and θe in the complex θ-plane. (a): the observation point is located in the near region and (b):
the observation point is located in the far region (see Figs.1(a) and 1(b)).

the aperture plane zi = 0 in the (xi, zi) coordinate system is given by [2], [4], [7], [9]

Ui(xi, zi = 0) =
1√
πW

exp
{
−(xi/W)2

}
(1)

where 2W denotes the beam width of the Gaussian beam. Then, the transmitted Gaussian beam observed
at the observation point P2(x, z) in the rarer medium 2 (ε2, μ0) can be represented by the following
integral

Ut =
k1
2π

∫
Pθ
T (θ)B(θ, θb)eik1q(θ)dθ (2)

where the beam function B(θ, θb), the phase function q(θ), and the transmission coefficient T (θ) are
defined as follows

B(θ, θb) = exp
⎡⎢⎢⎢⎢⎢⎣−
{
k1W sin(θ − θb)

2

}2⎤⎥⎥⎥⎥⎥⎦ cos(θ − θb), q(θ) = R cos(θ − θ0) + z
√
n2 − sin2 θ (3)

T (θ) =
cos θ −

√
n2 − sin2 θ

cos θ +
√
n2 − sin2 θ

, n =
√
ε1/ε2 < 1 (4)

Note that R, θ0, and θb are defined geometrically in Figs.1(a) and 1(b) and that n denotes the refractive
index. The original integration path Pθ in (2) is shown in the complex θ-plane in Figs.2(a) and 2(b).

3. Asymptotic Solutions for Transmitted Gaussian Beam
3. 1 Incident Angle θb Sufficiently Smaller than Critical Angle δ (θb � δ)

In this section, we will derive the asymptotic solution for the transmitted Gaussian beam when the
incident angle of the Gaussian beam θb is sufficiently smaller than the critical angle θ = δ, i.e., when
θb � δ.

In this case, as shown in Fig.1(a), the observation point can be located in the near and far regions.
Thus the transmitted Gaussian beam may be represented by [10], [11]

Ut = Ugo + uAHUeva (5)

where the integral representations of geometrically transmitted beam Ugo and evanescent beam Ueva are
given by

Ugo =
k1
2π

∫
SDPθs

T (θ)B(θ, θb)eik1q(θ)dθ, Ueva =
k1
2π

∫
SDPθe

T (θ)B(θ, θb)eik1q(θ)dθ (6)
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In the above integrals Ugo and Ueva, integration paths SDPθs and SDPθe denote the steepest descent
paths shown in Figs.2(a) and 2(b), respectively. In (5), the function uAH denotes the unit step function
defined by uAH = 0 when the observation point is located in the region on the left of the dotted curve AH
and uAH = 1 when the observation point is located in the region on the right of the dotted curve AH (see
Fig.1(a)). When the incident angle of Gaussian beam θb is sufficiently smaller than the critical angler δ,
the observation point P2 is located in the deep region (see Fig.1(a)). As we have shown in the papers
[10], [11], the evanescent beam Ueva is sufficiently small in the deep region, since the evanescent beam
Ueva decays exponentially rapidly in the z-direction. By applying the isolated saddle point technique,
one may obtain the asymptotic solution for the transmitted Gaussian beam Ut as follows [10], [11]

Ut � Ugo, Ugo ∼ T (θs)B(θs, θb)
√

k1
2π|q′′(θs)|e

ik1L1+ik2L2−iπ/4 (7)

q′′(θs) = − cos θs
{
R cos θ0 sec2 θs + z

n2 cos θs
(n2 − sin2 θs)3/2

}
< 0 (8)

The asymptotic solution for the geometrically transmitted beam Ugo represents clearly the transmitted
geometrical ray Oi → C → P2 observed at P2 (see Fig.1(a)). The geometrical parameters L1, L2, R, z,
and θ0 are defined in Fig.1(a).

3. 2 Incident Angle θb Sufficiently Larger than Critical Angle δ (θb � δ)
In this section, we will derive the asymptotic solution for the transmitted Gaussian beam Ut when

the incident angle of the Gaussian beam θb is sufficiently larger than the critical angle δ (see Fig.1(b)).
In this case, the observation point is located in the far region and two saddle points θs and θe contribute
to the integral (see Fig.2(b)). Since the saddle point θs is located near the branch point δ and far from the
beam incident angle θb, the beam function B(θs, θb) and therefore the geometrically transmitted beamUgo
become sufficiently small. Thus, by applying the saddle point technique, one may obtain the transmitted
Gaussian beam Ut expressed by using only the evanescent beam Ueva as follows [10], [11]

Ut � Ueva, Ueva ∼
√
k1
2πR

B(θ0, θb)eik1R−iπ/4T (θ0)e−k1z
√
sin2 θ0−n2 , θ0 = Re[θe] (9)

4. Numerical Results and Discussions
Fig.3(a) shows the results of the numerical calculation for the transmitted Gaussian beam when the

incident angle of the Gaussian beam θb = 30◦ is sufficiently smaller than the critical angle of the total
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Figure 3: Comparisons of the asymptotic solutions for the transmitted Gaussian beam with the reference
solutions.
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reflection δ = 41.25◦. The numerical parameters are W = 1.5λ, f=3 GHz, L1B = 30λ, L2B = 75λ,
ε1 = 2.3ε0, and ε2 = 1.0ε0. The beam magnitudes are calculated as the function of xt, the beam
coordinate xt[λ] (see Fig.1). It is clarified that geometrically transmitted beam Ugo ( ) obtained from
(7) agrees excellently with the reference solution (◦ ◦ ◦) calculated numerically from (2).

Fig.3(b) shows the calculation results for the transmitted Gaussian beam when the incident angle
of the Gaussian beam θb = 60◦ is sufficiently larger than the critical angle δ = 41.25◦. The numerical
parameters are W = 3λ, h = 200λ, and zO = 0.1λ. The beam magnitude has been calculated along
the beam coordinate xt (seeFig.1(b)). It is shown that the evanescent beam Ueva ( ) in (9) agrees
excellently with the reference solution (◦ ◦ ◦). It is noted that, in this case, only the evanescent beam can
provide the excellent solution.

It is very interesting to observe that the maximum value position of the transmitted Gaussian beam
is shifted from the beam axis xt = 0. This beam shift Δshi f t is produced both in the near region (see
Fig.3(a)) and in the far region (see Fig.3(b)).

5. Conclusion
We have derived the asymptotic solutions for the transmitted Gaussian beam observed in the rarer

medium when the Gaussian beam is incident on a plane dielectric interface from the denser medium. We
have confirmed the validity and the applicable range of the proposed asymptotic solutions by comparing
with the reference solution calculated numerically. We have shown that, as observed in the reflection of
the beam, the beam shift is also appeared in the transmitted beam.
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