Asymptotic Analysis Methods for Scattered Fields by a Coated Conducting Cylinder

${ }^{\#}$ Le Hoang Loc and Keiji Goto
Department of Communication Engineering, National Defense Academy
Yokosuka, Kanagawa, Japan, keigoto@nda.ac.jp

1. Introduction

The problems of the High-frequency (HF) scattering by coated conducting cylinder covered by a dielectric material have been an important research subject in the area of radar cross section, antennas and propagation, and so on [1], [2].

We have derived in [3] the extended uniform geometrical theory of diffraction (extended UTD) solution for the scattered fields by a coated conducting cylinder with a lossy medium. The extended UTD solution characterized by an impedance boundary condition (IBC) and effective in the transition region near the shadow boundary (SB) in [3] has agreed excellently with the exact solution when the thickness of coating medium is thin. However, the accuracy of the asymptotic solution in [3] deteriorates gradually as the thickness of coating medium becomes thick. In order to solve the above problem, it is necessary to newly take existance of the p th times reflected geometrical boundary (GB_{p}) into consideration where the GB_{p} denotes the tangent line at the refraction point of a coating surface after reflected p times on a conducting cylinder (see Fig.2).

In this paper, we study the asymptotic analysis methods taken into account the effect of the scattering phenomena inside a coating medium. Specifically, we derive both an extended UTD solution for a reflected-surface diffracted ray (RSD) effective in the transition region near the GB_{p} and a reflected-geometrical ray (RGO) solution in the lit region away from the GB_{p}. The validity and the applicability of the asymptotic solutions derived here are confirmed by comparing with the exact solution obtained from the eigenfunction expansion [3], [4].

2. Formulation and Integral Representation for Scattered Fields

Figure 1 shows a surrounding medium $1\left(\varepsilon_{1}, \mu_{0}\right)$ and a coated conducting cylinder of radius a covered by a complex dielectric medium $2\left(\varepsilon_{2}^{*}, \mu_{0}\right)$ of thickness $t(=a-b)$, and coordinate systems (x, y, z) and (ρ, ϕ, z). We examine the two-dimensional problem assuming that the electric line source $\mathrm{Q}\left(\boldsymbol{\rho}^{\prime}\right), \boldsymbol{\rho}^{\prime}=\left(\rho^{\prime}, \phi^{\prime}\right)$ is placed parallel to the coated cylinder.

The integral representation for the scattered fields E_{z}^{S} observed at a point $\mathrm{P}(\boldsymbol{\rho}), \boldsymbol{\rho}=(\rho, \phi)$, may be given by the following summation of the three kinds of integrals [4]:

$$
\begin{equation*}
E_{z}^{s}=E_{z, 1}+E_{z, 2}+E_{z, 3} \tag{1}
\end{equation*}
$$

Here, $E_{z, 1}$ denotes the integral representing the direct ray before passing through a turning point (TP) and $E_{z, 2}$ is the integral including both the direct ray after passing through a TP and the scattering phenomena on the coating surface. While, $E_{z, 3}$ denotes the integral including the scattering phenomena inside the coating medium 2 and may be represented as follows:

$$
\begin{align*}
E_{z, 3} & =\sum_{p=1}^{\infty} E_{z, 3}^{p} \tag{2}\\
E_{z, 3}^{p} & =\frac{i}{8} \int_{-\infty}^{\infty} \kappa_{1} T_{12} T_{21}\left(\kappa_{2}^{p} R_{22}^{p-1}\right) H_{v}^{(1)}\left(k_{1} \rho^{\prime}\right) H_{v}^{(1)}\left(k_{1} \rho\right) \exp \left(i v\left|\phi-\phi^{\prime}\right|\right) \mathrm{d} v \tag{3}\\
\kappa_{1} & =-\frac{H_{v}^{(2)}\left(k_{1} a\right)}{H_{v}^{(1)}\left(k_{1} a\right)}, \quad \kappa_{2}=-\frac{H_{v}^{(1)}\left(k_{2}^{*} a\right) H_{v}^{(2)}\left(k_{2}^{*} b\right)}{H_{v}^{(2)}\left(k_{2}^{*} a\right) H_{v}^{(1)}\left(k_{2}^{*} b\right)} \tag{4}
\end{align*}
$$

$$
\begin{align*}
& T_{12}=1+R_{11}, T_{21}=1+R_{22} \tag{5}\\
& R_{11}=-\frac{\log ^{\prime} H_{v}^{(2)}\left(k_{2}^{*} a\right)-Z_{s} \log ^{\prime} H_{v}^{(2)}\left(k_{1} a\right)}{\log ^{\prime} H_{v}^{(2)}\left(k_{2}^{*} a\right)-Z_{s} \log ^{\prime} H_{v}^{(1)}\left(k_{1} a\right)}, \quad R_{22}=-\frac{\log ^{\prime} H_{v}^{(1)}\left(k_{2}^{*} a\right)-Z_{s} \log ^{\prime} H_{v}^{(1)}\left(k_{1} a\right)}{\log ^{\prime} H_{v}^{(2)}\left(k_{2}^{*} a\right)-Z_{s} \log ^{\prime} H_{v}^{(1)}\left(k_{1} a\right)} \tag{6}
\end{align*}
$$

Here $H_{v}^{(1)}(\cdot)$ and $H_{v}^{(2)}(\cdot)$ denote the Hankel functions of the first and the second kinds [5], respectively, and the prime (${ }^{\prime}$) on the functions denotes the derivative with respect to the argument. $k_{1}=\omega\left(\varepsilon_{1} \mu_{0}\right)^{1 / 2}\left(k_{2}^{*}=\omega\left(\varepsilon_{2}^{*} \mu_{0}\right)^{1 / 2}\right)$ and $Z_{1}=\left(\mu_{0} / \varepsilon_{1}\right)^{1 / 2}\left(Z_{2}=\left(\mu_{0} / \varepsilon_{2}^{*}\right)^{1 / 2}\right)$ are the wavenumber and the characteristic impedance of the medium 1 (the medium 2). Notation ε_{2}^{*} denotes the complex dielectric constant of the material 2 and is defined by $\varepsilon_{2}^{*}=\varepsilon_{2}+i \sigma_{2} / \omega$ where σ_{2} is the conductivity. Notation $p(=1,2, \cdots)$ in (2) and (3) denotes the number of reflection on the conducting cylinder $\rho=b$. The time convention $\exp (-i \omega t)$ is adopted and suppressed here.

3. Asymptotic Solutions Including Scattering Phenomena inside Coating Medium

Figure 2 shows the shadow boundary $\mathrm{SB}\left(=\mathrm{GB}_{p=0}\right)$ and the once $(p=1)$ reflected geometrical boundary $\mathrm{GB}_{p=1}\left(\mathrm{~GB}_{1}\right)$ where p denotes the number of reflection on the conducting cylinder $(\rho=b)$. The surrounding medium 1 is divided into the lit and the shadow region by the GB_{1}. When the observation point is located in the lit region away from the GB_{1}, the once reflected-geometrical ray $\left(\mathrm{RGO}_{p=1}\right)\left(\mathrm{RGO}_{1}\right)$ is observed. While, we observe the once reflected-surface diffracted ray $\left(\mathrm{RSD}_{p=1}\right)\left(\mathrm{RSD}_{1}\right)$ when the observation point is located in the shadow region far away from the GB_{1}. In this section, we will derive the asymptotic solutions including the scattering phenomena inside a coating medium 2 .

3.1 Extended UTD Solution for Reflected-Surface Diffracted Ray

In this section, from the integral $E_{z, 3}^{p}$ in (3), we will derive the extended UTD solution for the p th reflected-surface diffracted ray $\left(\mathrm{RSD}_{p}\right)$ applicable uniformly in the transition region near the GB_{p} and in the deep shadow region far away from the GB_{p}.

In the shadow region, the main contribution to the integral $E_{z, 3}^{p}$ in (3) arises from the portion of the integration path near $v=k_{1} a$ in the complex v-plane. In this case, one may replace the functions $H_{v}^{(1),(2)}\left(k_{1} a\right)$ and $H_{v}^{(1),(2) \prime}\left(k_{1} a\right)$ by their Airy approximations [5] and the function $H_{v}^{(1)}\left(k_{1} x\right), x=$ ρ^{\prime} or $x=\rho$, by the Debye's approximation [5], respectively, with the transformation from the complex v-plane to the complex τ-plane via $v=k_{1} a+M \tau, M=\left(k_{1} a / 2\right)^{1 / 3}$. Then by performing the straightforward manipulation, one may obtain the following extended UTD solution [4].

$$
\begin{align*}
& E_{z, 3}^{p} \sim G\left(k_{1} L_{1}\right) \exp \left(i k_{2}^{*} L_{t}+i k_{1} \ell\right)\left(R_{2}\right)^{p} I(\xi) G\left(k_{1} L_{2}\right) \tag{7}\\
& G\left(k_{1} L_{1,2}\right)=\frac{i}{4} \sqrt{\frac{2}{\pi k_{1} L_{1,2}}} \exp \left(i k_{1} L_{1,2}-i \pi / 4\right) \tag{8}\\
& I(\xi)=\frac{i 8 M^{2}}{\pi Z_{s}} \cos \theta_{c} \int_{C_{\tau}} \exp \left[\left\{i \xi \tau+i\left(\frac{M^{2}}{2 k_{1} L_{1}}+\frac{M^{2}}{2 k_{1} L_{2}}+\frac{(2 p) M^{2}}{2 k_{2}^{*} a \cos \theta_{c}}-\frac{(2 p) M^{2}}{2 k_{2}^{*} b \cos \theta_{i}}\right) \tau^{2}\right\}\right. \\
& \left.\quad \quad \cdot \frac{\left\{-\left(w_{1}^{\prime}(\tau)+q(\tau) w_{1}(\tau)\right)\right\}^{p-1}}{\left(w_{1}^{\prime}(\tau)-q(\tau) w_{1}(\tau)\right)^{p+1}}\right] d \tau, \quad q(\tau)=i M \frac{\sqrt{\left(k_{2}^{*} a\right)^{2}-v^{2}}}{k_{2}^{*} a} \frac{1}{Z_{s}} \tag{9}\\
& M=\left(k_{1} a / 2\right)^{1 / 3}, R_{2}=-1, \quad \xi=M\{\theta-(2 p) \psi\}, Z_{s}=Z_{2} / Z_{1}, \tag{10}\\
& \theta=\left|\phi-\phi^{\prime}\right|-\cos ^{-1}\left(a / \rho^{\prime}\right)-\cos ^{-1}(a / \rho), \quad \psi=\cos ^{-1}\left(k_{1} / k_{2}^{*}\right)-\cos ^{-1}\left(k_{1} a / k_{2}^{*} \mathrm{~b}\right) \tag{11}\\
& L_{1}=\sqrt{\rho^{\prime 2}-a^{2}}, \quad L_{2}=\sqrt{\rho^{2}-a^{2}}, \quad \ell=a(\theta-(2 p) \psi), \quad L_{t}=(2 p)\left(a \cos \theta_{c}-b \cos \theta_{i}\right) \tag{12}
\end{align*}
$$

where notations $w_{s}(=\pi / 2)$ and θ_{c} denote respectively the incident angle and the refraction angle on the surface $\rho=a$, and θ_{i} is the incident angle to the conducting cylinder $\rho=b$ (see Fig.2).

We have also shown in Fig. 2 the propagation path of the once reflected-surface diffracted ray $E_{z, 3}^{1}$ with $p=1$ in (7)-(12). Notations L_{1}, L_{t}, ℓ and L_{2} may be interpreted as follows. $L_{1}(=\mathrm{Q} \rightarrow$
Q_{1}) denotes the propagation distance (path) of the incident cylindrical wave which illuminates the surface diffraction point Q_{1} from the source point $\mathrm{Q}, L_{t}\left(=\mathrm{Q}_{1} \rightarrow \mathrm{Q}_{2} \rightarrow \mathrm{Q}_{3}\right)$ denotes the propagation distance (path), where Q_{2} denotes the reflection point on the conducting cylinder $\rho=b$, passing through the medium $2, \ell\left(=\mathrm{Q}_{3} \sim \mathrm{Q}_{4}\right)$ the propagation distance (path) of the creeping wave along on the convex surface $\rho=a$, and $L_{2}\left(\mathrm{Q}_{4} \rightarrow \mathrm{P}_{2}\right)$ the propagation distance (path) from the diffraction point Q_{4} to the observation point P_{2}. Notation $G\left(k_{1} L_{1,2}\right)$ in (8) is the 2-dimensional free space Green's function and the integral $I(\xi)$ in (9) may be interpreted as the term including the effect of scattering phenomena that occurs on the propagation path from the point Q_{1} to the point Q_{4}.

3.2 Reflected-Geometrical Ray Solution

In this section, from the integral $E_{z, 3}^{p}$ in (3), we will derive in the p th reflected-geometrical ray $\left(\mathrm{RGO}_{p}\right)$ solution applicable in the deep lit region far away from the GB_{p}.

In the deep lit region, the main contribution to the integral $E_{z, 3}^{p}$ in (3) arises from the portion of the integration path near $v=k_{1} a$ in the complex v-plane. One may replace all the Hankel functions in (3) by the Debye's approximation [5] with the transformation from the complex v-plane to the complex w-plane via $v=k_{1} a \sin w$. Then by applying the saddle point technique [6], one may obtain the p th reflected-geometrical ray $\left(\mathrm{RGO}_{p}\right)$ solution [4]. The reader may be obtain the explicit RGO_{p} solution in [4].

4. Numerical Results and Discussions

In order to confirm the validity and the applicability of the asymptotic solutions derived in Section 3, we have calculated the scattered fields by a coated conducting cylinder illuminated by the incident electric-type cylindrical wave.

Figure 3 shows the scattered field strength vs. $\left|\phi-\phi^{\prime}\right|$ curves. The shadow boundary SB (= GB_{0}) is located at $\left|\phi-\phi^{\prime}\right|=95.7^{\circ}$, and the region in which the p th reflected-surface diffracted ray RSD_{p} can be observed is shown by the notation 〔, in the figure. The asymptotic solution (000 : open circles) is obtained by using the direct ray, the reflected ray on the surface $\rho=a$, and up to 3 times reflected-geometrical ray $\mathrm{RGO}_{p=3}$ on the conducting cylinder $\rho=b$. The asymptotic solution ($\bullet \bullet$: closed circles) is obtained by using both the extended UTD solution for the surface diffracted ray $(p=0)$ along the surface $\rho=a$ and the extended UTD solution series for the RSD_{p} in (2). It is observed that the asymptotic solutions ($\circ \circ \circ$ and $\bullet \bullet \bullet$) agree excellently with the exact solution (-_: solid curve) in each region.

Also shown in Fig. 3 is the conventional GO solution [3] (the direct ray and the reflected ray on the surface $\rho=a)(----$: dashed curve) for the lit region and the conventional extended UTD solution [3] (--- : dashed curve) for the region $\left(46.0^{\circ} \leq\left|\phi-\phi^{\prime}\right| \leq 180.0^{\circ}\right)$. The conventional GO solution agrees well in the lit region. However, the conventional extended UTD solution becomes inaccurate in the region $\left(46.0^{\circ} \leq\left|\phi-\phi^{\prime}\right| \leq 180.0^{\circ}\right)$. It is clarified that the conventional extended UTD solution produces the large errors in the transition and the shadow region.

5. Conclusion

We have derived the extended UTD solution for the reflected-surface diffracted ray and the reflected-geometrical ray solution taken into account the effect of the scattering phenomena inside the coating medium of a coated conducting cylinder. The accuracy of the asymptotic solutions derived here has been confirmed by comparing with the exact solution.

Acknowledgments

This work was supported in part by the Grant-in-Aid for Scientific Research (C) (24560492) from Japan Society for the Promotion of Science (JSPS).

References

[1] H. T. Kim and N. Wang, "UTD solution for electromagnetic scattering by a circular cylinder with thin loss coatings", IEEE Trans. Antennas Propagat., vol. 37, no. 11, pp. 1463-1472, Nov. 1989.
[2] P. E. Hussar, "A uniform GTD treatment of surface diffraction by impedance and coated cylinders", IEEE Trans. Antennas Propagat., vol. 46, no. 7, pp. 998-1008, July 1998.
[3] K. Goto, L. H. Loc, T. Kawano, and T. Ishihara, "Asymptotic analysis of high-frequency scattered fields by a coated conducting cylinder" (in Japanese), The Papers of Technical Meeting on EMT, IEE Japan, EMT-11-128, pp. 1-6, Nov. 2011.
[4] L. H. Loc, K. Goto, T. Kawano, and T. Ishihara, "Extended UTD solution for high-frequency scattered fields by a coated conducting cylinder" (in Japanese), The Papers of Technical Meeting on EMT, IEE Japan, EMT-12-18, pp. 7378, Jan. 2012.
[5] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, Dover, New York, pp.358-478, 1972.
[6] L. B. Felsen and N. Marcuvitz, Radiation and Scattering of Waves, Chaps. 4 and 5, IEEE Press, New Jersey, 1994.

Fig. 1 Coated conducting cylinder, and coordinate systems (x, y, z) and (ρ, ϕ). Q : electric line source, P : observation point.

Fig. 2 Direct ray, once reflected-geometrical ray RGO_{1}, and once reflected-surface diffracted ray RSD_{1}. Also shown are the transition regions near the $\mathrm{SB}\left(=\mathrm{GB}_{0}\right)$ and GB_{1}.

Fig. 3 Scattered fields by a coated conducting cylinder calculated from the asymptotic solutions and exact solution. The numerical parameters used in the calculation: $a=5.0, k_{1} a=100, t=$ $2.0 \lambda, \varepsilon_{1}=\varepsilon_{0}, \varepsilon_{2}^{*}=\varepsilon_{0} \varepsilon_{2 r}, \varepsilon_{2 r}=3+i 0.1$, source point: $\left(\rho^{\prime}, \phi^{\prime}\right)=\left(7.0,0.0^{\circ}\right)$ and observation point: $(\rho, \phi)=(8.0, \phi) . \circ \circ \circ$: asymptotic solution including $\mathrm{RGO}_{p}, \bullet \bullet$: asymptotic solution including RSD $_{p},-$: exact solution, $----:$ conventional asymptotic solutions.

