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Abstract

A novel microstrip-to-waveguide transition using mushroom-like electromagnetic bandgap
(EBG) structure is proposed. The transition consists of a waveguide terminated with a mushroom-
like EBG structure fabricated on a conductor-backed dielectric substrate and a strip probe in-
serted into the waveguide. The mushroom-like EBG structure can replace a quarter-wavelength
waveguide back-short used in the conventional probe-type transitions. The transition has been
designed on a single layered dielectric substrate by placing the EBG patches and the strip probe
on the same surface of the substrate. The fabricated microstrip-to-waveguide transition has
achieved a good performance with return loss greater than 15 dB over a bandwidth of 5% in
the Ka-band.

I. INTRODUCTION

Although planar circuits such as monolithic microwave integrated circuits (MMICs) are widely
used in microwave and millimeter-wave systems, metallic waveguide still play a major role in
specific types of circuits requiring low-loss performances. Microstrip-to-waveguide transitions are
key components for integrating waveguides with planar circuits. The well-known microstrip-to-
waveguide transition is the E-plane probe-type transition [1][2][3] which consists of a microstrip
probe and a quarter-wavelength waveguide back-short. It has a simple configuration and provides
a good performance, but the waveguide back-short is bulky for compact modules and causes
performance degradation due to manufacturing tolerance in positioning.

In this paper, a novel probe-type microstrip-to-waveguide transition without the waveguide
back-short is proposed. The mushroom-like electromagnetic bandgap (EBG) structure is applied
instead of the waveguide back-short, which provides a low-profile transition. The availability
of the proposed transition is verified by electromagnetic simulations and experiments in the
Ka-band.

II. CONFIGURATION

Figure 1 illustrates the proposed microstrip-to-waveguide transition with EBG structure. The
microstrip probe is inserted into the waveguide through an aperture in the broad wall. The
mushroom-like EBG structure [4] which consists of rectangular patches and through holes are
formed around the microstrip probe. In this configuration, the waveguide back-short is not
required because the EBG structure provides a high impedance surface. Since the microstrip
probe and the EBG patches are placed on the same surface, the transition can be formed
on a single layered dielectric substrate. Impedance matching is accomplished with microstrip
impedance steps at the probe feed point.

ISBN: 89-86522-78-0 94460©KEES - 459 -



Waveguide

Microstrip Probe

EBG Patches
Microstrip Line

Through Holes Dielectric Substrate

Fig. 1. Configuration of the microstrip-to-waveguide transition with EBG structure.

III. DESIGN

The EBG structure has a surface impedance characterized by a parallel resonant LC' circuit.
The basic structure of mushroom-like EBG cell is shown in Fig. 2 [5]. This structure creates
distributed inductance L and capacitance C which can be calculated with the following formulas,
using the physical dimensions and the dielectric constants shown in Fig. 2:

t-1

C = 710(%1 + ca2) cosh™! (E) . (2)
™ g

A resultant resonant frequency is obtained by

RETVireh )

Near the resonant frequency, the EBG structure exhibits high surface impedance. The tan-
gential electric field at the surface is finite, while the tangential magnetic field is zero, and
electromagnetic waves are reflected without the phase reversal that occurs on a flat metal sheet.

The reflection phase for the EBG structure was calculated using the electromagnetic simulator
(Ansoft HFSS™). The simulated model and the calculated result are shown in Fig. 3. At low
frequency, the reflection phase is 180°, as it is on a flat metal surface. Near the resonant
frequency, where the surface impedance is high, the reflection phase crosses through zero. At
higher frequencies, the phase approaches —180°.

The design of the proposed transition is accomplished with the following procedure. The
dimensions of the EBG structure are determined using the equivalent circuit to provide a high
impedance surface at the design frequency. The microstrip probe, on the other hand, is roughly
designed using a conventional design method for coaxial-to-waveguide transition with waveguide
back-short [6], approximating the microstrip probe to a cylindrical probe. Then, arranging
the EBG structure around the microstrip probe, both are optimized using a three-dimensional
electromagnetic simulator such as Ansoft HFSS™,
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Fig. 3. Reflection phase characteristics of the EBG structure with the following dimensions: a = 4.5 mm,
g=01mm,¢t=04 mm, w=22mm, ! =23mm, 57 = 1.0, £40 = 3.39.

IV. EXPERIMENTAL RESULTS

The proposed microstrip-to-waveguide transition has been designed in the Ka-band. Figure 4
shows the fabricated transition. A metallic waveguide is placed on a conductor pattern of
the dielectric substrate. The waveguide is terminated with a commercial coax-to-waveguide
transition. as shown in Fig. 4(a). The reflection characteristic of the transition was measured
through coaxial connector attached to the microstrip line. Figure 5 shows the measured result
compared with the simulated result. The experimental result generally agrees with the simulated
result. The return loss is better than 15 dB over a bandwidth of 5% in the Ka-band.

V. CONCLUSIONS

A compact microstrip-to-waveguide transition with the mushroom-like EBG structure on a
single layered substrate has been presented. The performance has been verified by the simulated
and experimental results at the Ka-band. The proposed transition which is free of waveguide
back-short structure realizes low profile and easy manufacturing.
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Fig. 4. The fabricated microstrip-to-waveguide transition.
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Fig. 5. Reflection characteristics of the microstrip-to-waveguide transition.
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