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1. Introduction 
 

The problems of an electromagnetic wave that is incident on a plane dielectric interface 
consisting of two different mediums have been the important research subjects for many years [1] – 
[10]. When the beam is incident on the dielectric interface from the denser medium, the lateral 
displacement (or Goos-Hänchen shift) occurs at an angle that is slightly larger than the critical angle 
of the total reflection [1] – [4]. When the cylindrical wave is incident on the negative index material 
(NIM) from the positive index material (PIM) side, it has been shown that the backward lateral 
wave is excited along the interface between the NIM and the PIM [9]. 

In this work, we shall derive the novel uniform asymptotic solution for the reflected and 
scattered fields over half-space metamaterials with the negative refractive index [7] – [9]. The 
asymptotic solution consists of the geometrically reflected ray on the metamaterial, the backward 
lateral waves, and the transition wave which plays an important role in the transition region. The 
validity of the novel uniform asymptotic solution is confirmed by comparing with the reference 
solution calculated numerically from the integral representation. 
 
2. Formulation and Uniform Asymptotic Solution 
 
2.1 Formulation and Integral representation 

Fig. 1 shows the schematic figure for the reflected and scattered fields over metamaterial, the 
two-dimensional coordinate system (x, z), and the plane interface consisting of ordinary material 
and metamaterial. Medium 1 is ordinal material with the real permittivity ε1 and real permeability μ1, 
while medium 2 is metamaterial with complex permittivity ε2 and permeability μ2. The electric or 
the magnetic line source Q is located at (0, h) and the observation point P is located at (x, z) in the 
(x, z) two-dimensional coordinate system. At the observation point P(x, z), the geometrically 
reflected ray PAQ →→ reflected at the point A on metamaterial and the backward lateral wave 
are observed. Note that the backward lateral wave is excited by the incident geometrical ray BQ →  
on metamaterial at the critical angle δ̂  of the total reflection. The equiphase of the backward lateral 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Schematic figure for reflected and scattered fields over half-space metamaterial and 
(x, z) two-dimensional coordinate system. θ 0 : incident angle of geometrically 
reflected ray,     : critical angle of totally reflected ray. δ̂
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wave propagates from C to B and from C to the observation point P as shown in Fig. 1. 
These geometrically reflected ray and backward lateral wave solutions excited by the 

magnetic line source (H-type) may be obtained from the following integral [9]: 
 
 
 
 
where )( 2

1
2
11 zx kkk −= and k1z are respectively the x-component and the z-component of the free 

space wavenumber k1 in medium 1. The reflection coefficient Γ(k1x) may be given by [9]:  
 
 
 
 
where k2 (= 22 μεω ) is the free space wavenumber in metamaterial (medium 2) and k2x denotes the 
x-component of k2. The scattered magnetic field s

yH in (1) directing the perpendicular direction to 
the paper (or the y-direction) in Fig. 1 may be transformed to the complex θ -plane via k1x = k1 sin θ . 
The integral in the complex θ -plane may be given by 
 
 
 
 
 
 
 
 
where the propagation distance R1 and the incident angle θ 0 of the reflected ray PAQ →→  used 
in the above equations are defined geometrically in Fig. 1 and m and n in (4) are defined as follows: 
 
 
 
 
The integration contour Pθ and the branch points at δθ ˆ±=  associated with the branch cuts ( δ̂         
and δ̂−          ) of the integrand in (3) are shown in Fig. 2 in the complex θ -plane. The branch point 

δθ ˆ= is defined by n̂sinˆ 1−=δ , nn −=ˆ . In the following section, we shall derive the uniform 
asymptotic solution from (3) by applying the high-frequency saddle point technique.  
2.2 Uniform Asymptotic Solution for Reflected and Scattered Fields 

When the high-frequency condition k1R1 >> 1 is satisfied, the integrand in (3) possesses the 
saddle point at θ  = θ 0 determined from 0)()/( =∂∂ θθ q (see (5)). Thus the integral in (3) may be 
evaluated by applying the saddle point technique after deforming the original integration path Pθ 
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Figure 2: The original integration contour Pθ , 
the branch points         associated 
with the branch cuts, and the steepest 
descent path (SDP). 

δ̂±
Figure 3: Second kind of backward lateral wave 

excited by the geometrical ray             
                incident on the point     at the critical 

angle       . 

BQ ′→

δ̂−
B′
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into the steepest descent path (SDP) passing through the saddle point θ  = θ 0 (see Fig. 2). As shown 
in Fig. 2, the branch cut (or cuts) is (or are) traversed by the steepest descent path (SDP). Thus the 
contributions to the integral in (3) may arise from the integration along the SDP and from the 
integration around the branch cut (or cuts) [6], [10]. The novel uniform asymptotic solution may be 
represented by [6], [10]: 
 
 
 
where go

yH denotes the geometrically reflected ray PAQ →→ (see Fig. 1). )ˆ(δyH is the 
contribution from the integration around the branch point δθ ˆ= and denotes the backward lateral 
wave shown in Fig. 1. The notation )ˆ( 0θδ −U denotes the unit step function where 1)ˆ( 0 =−θδU  
for 0

ˆ θδ > and 0)ˆ( 0 =−θδU for 0
ˆ θδ < . Thus the backward lateral wave )ˆ(δyH  can be observed in 

the region satisfying 0
ˆ θδ > (see Fig. 1). While, )ˆ( δ−yH in (7) arises from the integration around 

the branch point at δθ ˆ−= and denotes the second kind of the backward lateral wave shown in Fig. 3. 
The last term tran

yH defined as the “transition wave” plays an important role only in the transition 
region near the critical angle δ̂ (i.e., δθ ˆ

0 ≈ ) shown in Fig. 1. We assume that the observation point 
is placed at P(x, z) where x, z > 0. Then the asymptotic solutions may be given by 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
where D−3/2( • ) and D1/2(•) are the parabolic cylinder functions [10], [11] and the notations L0, L1, L2, 
used in the above equations are defined geometrically in Fig. 1 while 0L′ , 1L′ , 2L′ , are defined 
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Figure 4: Comparisons between the uniform asymptotic solution in (7) and the reference 
solution calculated numerically from the integral in  (3). 
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geometrically in Fig. 3. 
When the observation point P is located far away from the transition region, ξ defined in 

(10) takes the large values i.e., 1>>ξ . Then the parabolic cylinder function )(2/1 ξξ iD − [10], 
[11] is approximated by 
 
 
 
Therefore the terms inside the parentheses {  } in (12) approach zero as the value of ξ increases. 
This is the reason why tran

yH in (12) is defined as the “transition wave”. The transition wave plays 
an important role only in the transition region. 
 
3. Numerical Results and Discussions 
 

In Fig. 4(a), we have calculated the reflected and scattered magnetic fields s
yH  by using the 

novel uniform asymptotic solution derived in (7) associated with (8) – (12a) and compared with the 
reference solution calculated from the integral in (3) by applying the numerical integration along the 
original integration contour Pθ . We have also calculated go

yH , )ˆ(δyH , and tran
yH separately which 

compose the uniform asymptotic solution in (7). Note that the second kind of the backward lateral 
wave )ˆ( δ−yH in (7) is negligibly small compared with other terms (see Fig. 3). It is shown that the 
uniform asymptotic solution (         : solid curve) agrees very well with the reference solution (○○○ : 
open circles). One may observe that, as the observation point moves toward the backward direction, 
the backward lateral wave (        ) decays algebraically according to 2/3

1/1 L (see (9) and Fig. 1). One 
may also observe that the transition wave (        ) plays an important role only in the transition 
region near the critical angle 60ˆ ≈δ . 

Fig. 4(b) shows the E-type scattered field excited by the electric line source Q (see Fig. 1). It 
is clarified that the E-type uniform asymptotic solution agrees excellently with the reference 
solution. 
 
4. Conclusion 
 

We have derived the novel uniform asymptotic solution for the reflected and scattered fields 
over half-space metamaterial. The uniform asymptotic solution consists of the geometrically 
reflected ray, the backward lateral waves, and the transition wave which plays an important role 
only in the transition region near the critical angle. The validity of the uniform asymptotic solution 
is confirmed by comparing with the reference solution calculated numerically. 
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