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The cascade connection of periodic strip gratings is one of the
typical artificial dielectric structures [1]. We analyze the scattering
of obliquely incident plane waves by this geometry. A set of singular
integral equations (SIE) is derived and it is solved by the moment
method (MM). Some numerical results are presented.

Fig. 1 shows the cross section of the geometry. Strips with negli-
gible thickness and infinite length are allocated with the common period
D. The incident angles 6, and ¢g are shown in Fig. 2. The angles § = 0
and /2 correspond to ¢- and B-polarizationss respectively. The time
factor exp(Zwt) will be suppressed.

The fields are derived by £ = VV- Il + k% Il and B = fwe V x I,
where the electric Hertzian potential [l is represented by

; P
n= 1+ § n@ (1)
q=1
where [M° and M(q) are the contributions from the incident field and
the scattered field from the g-th plane, respectively;

i = k72 A% (xayom),  0P= 1) mé?)@n(x,y,-|z+hq[).
n =00

The modal function (Floquet harmonics) which satisfies the Helmholtz
equation and the periodicity condition is given by

(2)

0, (x:y,2) = expli(oz + By) + T z], (3)
where o = onm/D + k sin 80 cos ¢,, B = k sin 80 sin ¢0, Fn = (ai + B°
- k2)1/2 (Ih(?n) 2 (0), and k¥ = w/ey = 2m/A. For convenience we will

often use the vector notations for coefficients and functions, and
specify their scalar components

z incident plane by subscripts.
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Fig. 2  Incident field
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Owing to the orthogonality of the modal functions over one period,
we can express the unknown coefficients {ﬂéq) as

(q) A (-0 [P =7
Am,n _ 9 : Fx (1) Ceidran) -i2n(nd_/D + t’A )

@ |~ @ ipus e q q 4e
A D -1 PN ()

Yn n Y

where &q = qu/D, and the change of variable &’ = dq + w £ is intro-

duced. The unknown functions are related to the surface current density
z=-h +0 :
—lﬁy

2Dy =2x @ a0 (5)

Fiq)(t') _ oz D(d/dxz?)[ Jéq)(x’) exp(—iaox)] -
F(q)(t’) e J;Q)(x’) exp(-10.,@)
where Z (= vu/e) is the 1ntr1n51c impedance of the space. Substituting

(4) into the boundary condition Z x EWstrip 0, we obtain the set of

conventional integral equations (CIE) for the unknown functions (6).
Since the direct application of the moment method often leads us to
wrong results [2], we change CIE to the singular integral equations
(SIE) before the numerical treatment. The set of SIE is derived by the
following steps : A) Acceleration of the convergence of the infinite
series included in the kernels ; B) Use of the formulas on infinite
series to extract the singularities of the Cauchy type and the loga-
rithmic type. We thus obtain

1| rer-n + kP (8,67 0
/-1 0 -w“gap(log]t-t’| + Kép)(t,t’))
1 4gD FP) () 6P (1)
- dt, - 4
80 (2-p%y0? F;p)(t’) (p)(t)
p=1, 2, ***,P; -1<t<I, (7)
where the bounded kernels are
(p) s o . s =1
K7 (t,t") = ap cot [(¢ -t)&p] - (£’-t) (8)
K;p)(t,t’) = log [2 sin (|t—t'|ap) / |t-¢’]1. 9

The right hand side of (7) is composed of the terms related to the
incident field and the multiple scattering among the planes.

The set of SIE (7) is solved by the moment method (MM) [3].

First we expand the unknown functions in terms of the Chebyshev poly-
nomials of the first kind T (£?) = cos (n arccos t’) :

PP 00) = ] £fPr sy @ -5, pa1, 2 e, p0 QO
n=0

The above form exactly correspond to the edge condition. The next
step is the choice of the testing functions. Taking the characteristics
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of the singular kernels into account, we find that the weighted Chebyshev
polynomials T&(t)(! - ta)—1/2 and qﬂ_l(t)(l - t231/2 are the appropriate
testing functions, where Um_I(t) = sin| m arccos t] [/ sin arccos ¢

is the second kind polynomial. We thus obtain the set of linear
equations for the unknown coefficients f‘p). The elements of the
operator matrix include the infinite series related to the Floquet
harmonics. In the numerical calculations, the lowest 2L + I (from

-L to +L) harmonics are retained, where L is chosen to be 3W.

To demonstrate the accuracy of the SIE-MM solution, we present the
convergence of the total transmitted powers for a single grating in Fig.
3. The incident power is normalized to be unity. In the case where P =
2, the distance between two planes is set equal to zero and the effect
of the interaction is strongest. This is why the curve for P = 2 is
a little oscillatory. However the both curves approach 87.485 [%] when
I is increased, which is the accurate value presented in ref. [4].

Figs. 4 and 5 show the total transmitted powers for doubly and
triply stacked gratings, respectively, where the incident field is ¢-
polarized. In Fig. 4 the discrepancies between SIE-MM and ref. [5]
are obvious when 4 = (0.2D and % = 0.5D, especially near the cutoff
frequency of the higher order modes (D/A = I). The reason for this
is in ref. [5] the interactions of evanescent modes are not taken into
account in the analysis.
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Fig. 3 Convergence of total
transmitted powers for two iden-
tical structures (P = I and 2).
6, =0, = 45°% ¥ = 60°.

0
For P = 1, D/A = &, 2w1 =
D/3, dj = hl = 0.
For P = 2, D/A = 4, 2w1 =
2w2 = D/8, di =0, d2 =D/2, and h} = h2 = (.
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Fig. 4 Total transmitted powers for two symmetrical gratings : ij

2w2 = 0.3D, 90 = ¢0 =0, and Y = 0 (&E"L // strips). Lines are SIE-MM
solutions, and dots are cited from ref. [5]=
( —===— A : h=0.2D, —- @ : h=20.5D, o :h=D
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Fig. 5 Total transmitted powers for three staggered gratings at
oblique incidence : 2w, = sz_ = 2w, = 0.1D, d’l =0, dg = (0.25D, dS =

1 )
0.8D, {30 =¢0 = 15°, and ¢ = 0,
( - 2 R = 02D —- 3 h = 0.8D, —  h =D)
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