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SYNOPSIS

A theory is developed to establish
some relations between cylindrical and
spherical wave functions. Some of these
results can be reduced to well-known
formulae as special cases. The repre-
sentations thus obtained have been
utilized for the problem of scattering
of cylindrical waves by a spherical
ocbject.

The problems involving scattering
or diffraction of plane waves or spheri-
cal waves by cylindrical and spherical
objects are well known and can be found
in standard literature.[1-4] Since
spherical waves can be generated by a
dipole (or point source), the scatter-
ing of spherical waves by an cbject is
a phenomenon equivalent to the radiation
of a dipole in the presence of that
cbject. Similarly, the scattering of
cylindrical waves is equivalent to the
radiation from a uniform line source
(infinitely long) in the presence of
the object under consideration. The
success in obtaining rigorous solutions
of such problems, namely, scattering
of plane waves or spherical waves by
cylindrical or spherical objects, lies
in the ability to represent plane, as
well as spherical waves in terms. of
either cylindrical or spherical wave
functions. Since a c¢ylindrical wave
can easily be expressed as a super-
position of cylindrical wave functions,
the problem of radiation from a line
source in the presence of an infinitely
long cylindrical object with its axis
in the same direction has also been
studied successfully in literature.
However, the analysis of the radiation
or scattering of a line source in the
presence of a spherical cbject
encounters mathematical difficulties.
This problem becomes more complicated

when the source of radiation is electro-
magnetic in origin. The topic of the
present paper addresses itself to such
a study.

There are at least two methods of
attacking this problem. Since the
scattered fields of a line source in the
presence of a sphere have vector
character, one may attempt as a first
method to establish a relation between
the cylindrical dyadic Green's function
and the spherical dyadic Green's func-
tion, both being appropriate for free
space (i.e., without regard to the
presence of the sphere). For the
second method, one may represent the
radiation from a line source in free
space in terms of the radiation field of
the corresponding dipole source for which
the dipole field is expressed as an
expansion of spherical wave functions.
Although these two methods appear to
be different, they produce the same
results which can be used for the actual
problem (i.e., when the sphere is
present). This procedure enables one
to represent some cylindrical functions
in terms of spherical wave functions in
the form of inifinite series or integrals.
In establishing such representation, it
will be necessary to invoke some unfamil-
iar orthogonality relations([5] involving
spherical and cylindrical functions.

In the preceding paragraphs the
general outline of the method of pro-
cedure is given. Due to lengthy and
involved mathematics, it is not possible
to present details here. Instead, as an
example, we consider a specific problem.
Namely, the radiation of an electric line
source oriented parallel to the z-axis
in the presence of a perfectly conducting
sphere with its center at the origin.
Since it is necessary to employ both the
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cylindrical and spherical coordinates
simultaneously, we designate (z,8,2)
and (8, ¢ ) to represent cylindrical
and spherical coordinates. Maxwell's
equations (in M.K.S. units) appropriate
for this investigation may be expressed
in the following mannexr (suppressing

the ?ssumed harmonic time dependence,
-gi
e )
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where § is a constant representing the
strength of the line source per unijt
length and Z, is the unit vector in the
polar or z-direction. The radial
distance (in cylindrical coordinates),
A, is longer than the radius, a, of the
sphere. The nonvanishing incident
fields from the electric line source
consist of £, ,h’""‘ and A{,”‘
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where 8, , is the well known Kronecker
delta.
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The scattered fields from the
sphere may be expressed in terms of two
potentials A and F, in spherical
coordinates as

A=33 8 rh e B os cos m(B-4)(38)
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The Spherical Bessel and Hankel
functions j,(kr) and hY (kr), respectively
are expressed in terms of the corres-
ponding cylindrical functions in the
following manner. [3]
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The tangential scattered electric
fields are given by
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Now requiring that the total (inci-
dent and scattered) electric fields
vanish at the surface r = a of the con-
ducting sphere, the amplitude coeffi-
cients B, ,and C,, ,can be determined
in principle. As mentioned previously,
only the final results, without the
detailed derivation, are presented in
tge following:
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The prime sign indicates derivative with
rsspect to Ka.
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ime It shogld be noted here that although
E47°50 , Eg #0 . However, both #;™
and #,° 'vanish identically.
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