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1. INTRODUCTION
We consider a least-squares problem that

PROB. 1 Find the An-coefficients that make the norm
M 1 M ire
Il 2 Ao —F Il = U | = AaM@ulx) — f(x) |2 dx] (1)

m=1 o m=l
minimum. Here, dn’s are basis functions, and f is a given function.

Such a least-squares problem often arises in numerical approach of scattering prob-
lems. There, the interval [0,1] corresponds to the boundary of a scatterer and the
functions f(x) and @ .(x) are the boundary values of an incident wave and the modal
functions, respectively. We assume that ¢.’s and f are the analytic and periodic
functions on the interval.

Theoretically speaking, it is obvious that the coefficients are the solutions
of the normal equations[1]. And there is no room for doubt. However, in numerical
computations, we must discretize the PROB. 1 so that the computer can handie the
problem. Here arise two questions .

Q1. How to discretize the problem

02. How to solve the discretized problem.
These guestions are very important because the accuracy of the evaluated solutoion
and the amount of numerical computations directly depend on them.

In this paper, we give the answer for these questions from numerical considera-
tions using the orthogonal decomposition {QR algorithm and SVD(singular Value Decom-
position)}[2], which is an efficient numerical technique for solving least-squares
problems. As an example, we deal with the least-sguares problem which arises in
analysing the plane-wave diffraction from a grating by Yasuura’s method [3].

2. NUMERICAL TECHNIQUE

As approximation of the norm defined in Eq. (1), the trapezoidal rule is prefer-
able since the integrand is analytic and periodic (This fact is derived from the
Euler Maclaurin formula)(1]. Therefore, we discretize the norm as

M .} M 12
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Here, J is the number of divisions and the sampling points x; are chosen as
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Xy = (J'l)/J (leyzl—“‘j)s (3)

and w =(1/))¥2 . Note that we denote the least-squares solutions as A.(M,))
because the coefficients depend on J in the numerical approach.

Using the vector-matrix notation, the least-squares problem minimizing the norm
Eq. (3) is denoted as follows:

PROB. 2  Find the vecotor A= [A./(M,)),A;(M,)),...,A:(M,))]T that make
the euclidean norm || ®A—F |l; minimum.

Here, & is the Jacobian matrix defined by

¢1(51)9 $a(ss)s -« - :d’m(Si)
¢ = v ¢1(‘Sa)’ pa(se); - . . s‘ibn_(se) (XM, (4)
‘t’z(lSJ); ¢a:(SJ)i SERE 9¢NF(SJ)

and ¥ is a J-dimentional complex vector
f = w [f(8y) sT(8e) o » » « f(83) I° (T : transpose). (5)

We employ the orthogonal decomposition method to the discrete least-sguares
problem (PROB. 2). The SVD or QR algorithm is based on the orthogonal decomposition
of the Jacobian ® [2]. For details on the algorithm, please refer to the literature

on numerical analysis, e.g. Refs.[1]-[2]. It should be noted that the Jacobian & (
or ) is complex .

Singular-Value Decomposition [2]
In this decomposition, the Jacobian ® is expressed in the form

$=USV (6)

wvhere U : a JXM matrix with orthogonal columns [ U*U=1y ]
V . an MXM unitary matrix [ V*V=VV*=1y]
S : an MXM diagonal matrix [ S=diag(o1,02,+..0n) ]

The diagonal entries o (j=1,2,..M) of S are called the singular values of matrix
&. Evaluating the values o ; of ®, we can calculate the significant quantities
such as rank(®) (which is the number of non-zero ¢ ;) and Cond(®) (=0 max/ Tmin)-
We use this Singular-VYalue Analysis to investigate the correctness or reasonableness

of the discretization of Eas. (2) and (3).

The least-square solution is evaluated by the decomposition of Eq.(6) {A=V S*
U*f where S*=diag(c:*,02"...0x*) and 0 ;* = 1/0 (o ;>0); 0 (o ;=0)}. However,
if it is clear that the Jacobian is full rank, the evaluation of the least-squares
solution A by means of the SVD is not reasonable from points of view of amounts of
numerical computations. In such a case, we employ the QR algorrithm.

QR algorithm [2]
When rank(®) is equal to M, & is decomposed as follows

= QR. (7

where Q : a JXM matrix with orthogonal columns [ Q*Q=1 x ]
R : an MXM upper triangular matrix [ rank(R) =M ]
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Then, the least-squares solution is determined from the equation RA= Q*F . It
should be noted that R is the regular and triangular matrix.

3. APPLICATION TO YASUURA’S METHOD

As an example, we consider the least-squares problem which arises in analysing
the problem of Fourier grating by Yasuura's method.[3,4]

Figure 1 shows the cross section of a Fourier grating and coordinate system. We
find the diffracted field when a plane wave

F(P) = exp(ikx sin@ - iky cos &) (8)

hits the surface of the grating. The approximate wave function for the diffracted
fieldis is set up by putting

N
UiP) = T Aul) PulP) (M = 2%D) ®

m=-N
»a(P) = exp{iCksin@+2mm/d)x + i Bn v} (10)
Bu= {k®-Cksin@+2mm /d)2}*2 Re{B.}=0;Im{ B0

The numerical algorithm of Yasuura’s method reduces to the PROB.1[3,4]. Namely,
the expansion coefficients An(M) are given as the solution of the least-squares
problem where @ .(x)=exp(-ikxsin@ ) nlx, 7 (x)] and f(x)=exp(-ikxsin® Flx, 7(x)].

First, we show the result of the singular value analysis. Figure 2 ShowS O max
Omin, cond(®), Qu and £u as functions of | , where M = 21 (N=10). Here, Qx =
[|®A—F [, 2 and €4 is the energy error [3]. In this figure, all the quantities
become constant for J not less than 2M (=42), as expected from the results stated in
Ref. 3. This tendency is common to any other choice of the parameters M (or N), k, &
etc. From the singular value analysis, it is confirmed that the choice

J =2 an

is sufficient for approximating the PROB. 1 ,

AS Owmin iS not equale to zero as shown in Fig.2, the Jacobian & is full rank.
Therefore, it is confirmed that we employ the QR algorithm to evaluate solutions of
the discretized least-squares problem. To show Lhe effectiveness of the algorithm,
in Fig. 3, we compare the errors Qu and € of solutions by the QR algorithm with
those of thenormal equation. The numerical trouble in the normal equation as ob-
served in Fig. 3 is a typical example of ill-condition [1,2].

We conclude the numerical approach to the least-squares problem of Yasuura’s
method : (A1) We choose the number of equi-spaced sampling points to be twice as
much as the total number of basis functions (J=2M) ; (A2) We employ the QR algorithm
to the discretized least-least squares problem.
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Fig. 3 Comparison of QR algorithm and Normal equation.
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