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Abstract

The concept GMT (Generalized Multipole Technique) is a generic name recently
choosen by different groups of at least four continents working on similar methods.
The MMP-programs (Multiple MultiPoles) are a programm package which have
been developped for the last 8 years in our group and are now installed on PC’s.

The aim of this paper is to show the possibilities of the method for the calcula-
tion of various types of antennas. For some of the following examples the method is
particularly adapted, but the limits of the method will be shown. The computation
time for all the examples will be given.

For this purpose, an elliptical cylinder with elliptical hat and a cubic rod (both
body with ideal material) have been investigated. The results of the computations
for the different fields will be shown.

1 The MMP- Method, now called GMT

Different groups, from Japan, Europe, USA and Israél were working on similar
methods involving multipoles as basis functions. They have agreed to use a com-
mon generic name [1], which is GMT (Generalized Multipole Technique), so the
name MMP-method [2] used in previous publications, is now replaced by GMT,
and the name MMP is kept for the program package.

For the MMP-programs, the domains have to be piecewise linear, homogeneous
and isotropic. The time dependency is harmonic. Work is actually in progress to
allow the computation with transient fields and also with non linear materials.
The programs are based on a direct expansion of the electrical and magnetical
field (Helmholtz equation). More precisely, for scattering problems in 3D, we have
to find a vector function f, which fulfills the partial differential equation H,f = g,
in each subdomains D, of the field region D. H, (A+k?) is the Helmholtz operator
and g, the source of the field (plane wave, dipole, etc.).

Additionally, f must fulfill continuity conditions on the bondary between D,
and D;. The solution to this problem leads to expand the function f —in each D;-
in a series of basis functions:

N
f=Anfio+ Z A fin
k=3

with H; A fir = 0 and H;Ajofio = g:
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The expansion functions f;; are exact solutions of the field equation in a do-
main. In general, we use multipoles. They also may have different origins. The A;;
are calculated with the boundary equations, using an generalized point matching
technique (GPMT). This GPMT simply uses an overdetermined system of equa-
tions which is solved in the least—squares sense. The weighting of each equation is
given by the the error method (EM), whith a good definition of the error.

Only the boundary of the domains has to be discretized (even in the case of
lossy materials), which is a major advantage, especially for installation on PC’s.
Another advantage of the method is that when you have the A;x, the calculation
of the field anywhere (near and farfield) and the zooming are very easy.

2 Power and limits of the method

The first body (ideal elliptical cylinder, e = 0.745) has 3 planes of symmetry and
a smooth geometry. The second one (the cubic rod) has also 3 planes of symmetry
but the geometry is not anymore smooth (corners and edges). These geometric
singularity are a problem for the method. We need the boundary conditions (as
we have seen in the first paragraph) to determine the parameters and for that
purpose the direction of the tangents must be well defined. At the geometrical
singularity, this is clearly not the case. We have to consider a surface which 1is
continuous but not differentiable everywhere. As there are no tangents at the
singularity, no points for the fulfilling of the boundary conditions can be placed
there. So what are the possibilities to overcome that difficulty? Well, as soon as we
are leaving the singularity, the boundary conditions can be fulfilled. So a special
treatment for a sharp edge with the MMP-method is needed. This can be solved
in a few simple steps. For example, extra multipoles (they always have a very local
behavior) for the (sharp) edges, division of the bulk of the lossy body in fictitious
subdomains, appropriate weighting for ideal conductors, etc.

It is not necessary to implement additional numerical conditions as for example
the Meixner edge condition or the Sommerfeld radiation condition as the multipoles
fulfill all these conditions implicitely. A multipole in 3D has the following typical
form: :

o= JHEL

With simple limit considerations, it is possible to show that all these conditions
are satisfied. On the other hand, an analytical treatment of the sharp edge (when
possible) shows that the field should be infinite at the singularity. Of course,
this could be very nice for some applications but our method only allows a finite
dimension for the fields, which is presumedly nearer to the physical reality.
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3 Results and discussion

The programs are implemented on Sun workstations and on PC’s with a good con-
figuration (processor 80386 with coprocessor 80387, Weitek mW1167 accelerator ,
memory extension). Now, the parallelisation of the installation is completed and
with T800 transputers bigger problems can be calculated much faster [3].

The illumination is always a horizontal plane wave with vertical polarisation.
The length of our finite cylindrical bodies are A/2. The relative magnetic suscep-
tibility (u,) and electrical permittivity (e,) are both choosen to be one.

Figure 1 shows the error on the boundary for the elliptical cylinder. The left
and the right pictures are the same representation of the error taken from two
different points of view (3D-pictures). Only 1/8 of the cylinder is shown on the

picture as symmetry considerations are used and only a part of the body needs to
be discreticised.
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Figure 1 Error on the boundary, stereo figures

Figure 2 shows the electrical and magnetical field for the elliptical cylinder in
three planes (xy—, xz— and yz-plane). The signification of the pictures: the length
of the arrow is proportional to the projection of the vector field on the plane of
representation. The radius of the circles is proportional to the perpendicular (to
the plane of representation) projection of the field. The computation time on a
Sun 3/260 workstation is approximatively 4100 sec (668 unknowns).

Figure 3 shows the results for the rod in three planes for the electrical and
magnetical field. The error is bigger in the top plan and also at the corner. If the
nearfield does look good the error (residius) are relatively big. as the multipoles

can model a smooth shape, but have difficulties as soon as the geometry is getting
a little wild.
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