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1. Introduction

Analysis of the diffraction by gratings is important in electromagnetic
theory and optics. Various analytical and numerical methods have been devel-
oped so far and the diffraction phenomena have been investigated for many
kinds of gratings [1]-[5]. However, there are only a few papers that have
treated the diffraction by gratings using function-theoretic methods. The
Wiener-Hopf technique is known as a powerful tool for analyzing the diffrac-
tion problems, and the author has solved the diffraction by several transmis-
sion gratings of parallel-plate gecmetry using this technique [6][7]. He has
also clarified that the gratings of this type exhibit useful features as reso-
nators and filters from a technical point of wview.

Most of analyses in the above-mentioned papers are restricted to the case
of plane boundaries or periodic structures. It is important to investigate
the diffraction by gratings without these restrictions. In [8], as an exam-
ple of gratings with non-plane boundaries and finite periodicity, the author
has treated the diffraction by a sinusoidal grating of finite width and devel-
oped a method of solution using the Wiener-Hopf technique combined with the
perturbation method. Analysis of the problems of this kind is particularly
important for investigating the edge effect of the grating with finite period-
icity. In the present paper, we shall treat the same problem and derive the
asymptotic solutions to the perturbed Wiener-Hopf equations obtained in the
previous paper [8] and make a physical interpretation for the results briefly.
The time factor is assumed to be exp(-iwt) and suppressed throughout this
paper.

2. Exact solutions to the perturbed Wiener-Hopf equations

Let us consider the diffraction of an E-polarized plane wave by a sinus-
oidal grating of finite width as shown in Fig. 1. The grating surface is
perfectly conducting and is described by the equation x=hsinmz, -a< z<a,
where #h and m are some positive constants. Let the total electric field
% (x,3) (ZEf (x,2)) be

Fig. 1. Geometry of the problem.
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of (z,2) = ¢ (x,2) + O(x,3), (1)

where ¢": (x,2) is an incident field given by

- _-' -4 +

5,8 = o ik (xsin 8¢ + 2z cos Eln}‘r 0< |8| < m/2. 2)
In (2), k (=w/ligep ) is the free-space wave number. Assuming that the depth
h of the grating is sufficiently small compared with the wavelength, we can
approximate the boundary condition on the grating surface by

t
cbt(o,z) + hsinms 8 ég,z} + 0(h?) = 0, ~q <3 <a, (3)

This shows that the original diffraction problem has now been reduced to that

concerned with a flat strip under the mixed boundary condition (3).
For convenience of analysis, we assume that the medium is slightly lossy

as in
k =k, + iks, 0< ky <Ky, (4)

Then the Wiener-Hopf procedure combined with the perturbation method [8] leads
to the following Fourier integral representation for the scattered field :
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In (6)=-(9), & (S0 +iT) is a complex variable and the proper branch for the

double-valued function vy(a) is chosen such that Yy(a) reduces to -ik when

a=0, and
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Subscripts + and = introduced above imply that the functions are regular

in the upper (1> -kscosf;) and lower (T< kscosB;) halves of the complex «~-
plane, respectively, whereas the subscript (+) 1is used for the functions
regular in the upper half-plane except for simple poles at a=Kkcos 0y or
a=kcos 8, for n=1,2, Equations (11) and (12) are the exact solutions to
the perturbed Wiener-Hopf equations derived in [8], but they are formal in the
sense that the branch-cut integrals with the unknown functions in their inte-
grands are involved. It can be proved with the aid of the edge condition
that U(S_'_r)d(a) and Iﬁ-’}d () are O(U."B/z) as o+ in the upper half-plane.

3. Asymptotic solutions
In this section, we shall derive the asymptotic solutions for large [k|a

based on the results obtained in the previous section. Let us introduce the
auxiliary functions as in

S,d = ,d Ao BQ
F. U(S+) (o) = | 0+ Xk cos 8, B a- Kcos 8 s (18)

Then us d(or.) defined by (13) can be expanded asymptotically for large |k|a as
K+{k) {xa(k) + Xb(k)}

“s,d(“} ~ 17X (B £ E(a) £ 4gn (o) + Bopmy () (19)
after some manipulations, where
E(a) = (ezika/fral/z) Lol-2i(a +k)al, (20)
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Substituting (19) into (11) and taking (10) into account, the asymptotic expres-
sions of Ugyy(a) and U_(a) for large |k|a are derived. Almost similar
procedure can be applied to the asymptotic evaluation of ”s,d(“} defined by
(14). Therefore, we can substitute this result into (12) to obtain the as-
ymptotic representations of V{+ﬂa] and V_(a) for large ]k!a by using
(10), but the detailed derivation is omitted here.

Collecting the results obtained above, it is found that ¢(0Rzu z) de-
fined in (6) gives the field scattered by a flat strip without sinusoidal cor-
rugation [9]. on the other hand, ¢{lkx, z) is +the correction term to
¢(0Hm, z) due to the presence of corrugation. Using a rigorous asymptotics,
we can show that these terms are both of 0{(ka)™3/2} as |k|a+.
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