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An important problem in over-water paths is reflection
fading. One solution to reduce this effect 1is the application
of space diversity (vertically spaced antennas) or frequency
diversity., The basic question is to achieve optimum
spacing between antennas or frequencies. In a flat-earth
geometry the spacing is easily obtained []]. An empirical
correction to improve this result was suggested by Boithias
and Battesti [2]. Another approach was proposed more recently
by Vigants [3], where the reference was also the flat-
earth case. However the best way to analyze this problem
is to take into account the statistical behaviour of the
effective earth radius. This approach s considered in
this paper for the case of dual space diversity.
Although our results can be applied to any refractive
index gradient distribution, they are considered here in
connection with a normal distribution. -

The basic geometry is shown in figure 1. The necessary,
but not sufficient, condition for simultaneous fading
(received signal in both antennas below a specified level
L) is given by,
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a, = ka effective earth radius; k = 133 dn74dh
dn/dh - refractive index gradient; X - wavelength

From (1) we can define an upper bound for simultaneous
fading probability P(E1 €L, E, < L) , i.e.,
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If we know the refractive index distribution the probability
density function p(A) can be computed. The expression for
P{A) then reads,
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In the special case where the refractive index gradient
in normally distributed, p(A) will follow the same
distribution. In this case P(A) is given by,
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where
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and m and ¢ are, respectively, the median and standard deviation
of A distribution.

In the numerical example presented here we will assume the
median value of k as 4/3 and the value exceeded in 99,9% of
time as 0,8 (typical values for temperate dimate). For these
values me have,
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Introducing (4) and (5) in (3), we finally arrive at,
P(A) = § {Q[(#- 1)c-u,69] - Q [(%- l)c-h,69]} (6)
n=-c n n
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and
L =ﬁ£ - normalized spacing
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An application of (6) can be described in the following
steps. The value of ¢ is fixed from link data (distance
and antenna heights). Once it is specified the reference
level L, from (6) we can compute P(A) as a function of
normalized spacing £ . This procedure is exemplified in figure
2 for the case of cZ12 (typical value for a microwave 1ink)
and L=20dB. In this situation we must choose the 2 =0,65,
correspondig to minumum value of P(A). n

Other numerical results and universal curves will be
presented in the final form of this paper, including a
discussion on the application of flat-earth geometry. According
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the development here, it will be shown that this result
is valid for large c. This case is important when hl is
small and h2 large.
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