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1 Introduction
Keeping step with the recent progress in mobile telecommunications, the frequency in use tends to be
higher to provide the enough bandwidth for diverse services. Antennas for such applications need to be
small,light weight and of simple structure. Dielectric resonator antennas have been studied as one of the
candidate for these requirements.

Antennas consisting of materials including dielectric have been studied mainly by experiments. For
the design of such antennas, the theoretical treatments are indispensable.

There are several numerical method solving the boundary value problems for the structure includ-
ing dielectric. Finite Difference Time Domain (FDTD) Method , Finite Element Method, Boundary
Element Method, and Volume Integral Equation Method are the representatives. This paper examines
the Polarization Current Model Method (referred to as PCMM hereafter) concerning the possibilities
to the numerical analysis of antennas including the dielectric materials. The PCMM was introduced
by Richmond in 1960s. He published the papers dealing with the scattering by a dielectric cylinder
of arbitrary cross section shape, for both the TM-wave incidence case[1], and the TE-wave incidence
case[2].

The outline of the PCMM application to 2D problems will be described in the next section, where
it is pointed out that some care should be paid. A dielectric loaded slot antenna is analyzed, and the
results are compared with those by the HP-HFSS (High Frequency Structure Simulator) which belongs
to the category of Finite Element Method.

2 Outline of Polarization Current Model Method
Maxwell equations inside the medium with relative permittivity"r can betransformed as follows.

r�E + j!�0H = 0; r�H � j!"0E = J (1)

J = j!"0("r � 1)E (2)

, whereJ is referred to as polarization current[1]. Eq.(1) is equivalent to the Maxwell’s equation in the
vacuum whereJ exists, which means that the scattered electromagnetic field by the dielectric body is
equal to the electromagnetic field radiated from the current distributionJ . Hence, the total fieldEt, the
incident fieldEi and the scattered fieldEs are equated as

Et = Ei +Es (3)
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Eq.(4) is an integral equation for the unknown total fieldEt, in whichr is an observation point andr0

is a source point, respectively.
Consider the 2D problem by the PCMM, where the fields are independent ofy. For the TEy polar-

ized incident wave, Eq.(3) reduces to the following matrix equation in the moment method treatment of
point matching procedure. "
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"m is the relative permittivity of the discretizedm-th subsegment, andH(2)
0 (x) is the second kind

Hankel function of order 0.
When the integral areaSm in Eqs.(7)� (9) is a rectangular region as shown in Fig.1(a), it is conve-

nient to replace it by the circular region as shown in Fig.1(b). By this approximation,Z
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, whereu =
`p
�
; Rnm = j�

n
� �

m
j. Substituting Eq.(11) in Eqs.(7)�(9), and solving the Eq.(6), we

obtain the total electric fieldEt.
During this analytical process, special care has to be paid to the differentiation of Eq.(11) when

n = m, namely the case where the source point and the observation point coincides. The correct
derivatives are as follows.
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, which can be derived from the following relations and from the symmetrical property.
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Figure 1: Transformation from the rectangular to the circular integral region
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3 Analysis of dielectric loaded slot antenna
Fig.2(a) shows a dielectric loaded slot antenna, where a slot with width s is placed on x�y plane, one of
the walls of a parallel plate waveguide, and a rectangular dielectric with width W and hight H is placed
on the slot. The parallel plate waveguide is a kind of TEM waveguide, and the field is independent of y
and no fringing field exists if it is infinite in extent in the y direction. For the thin slot, i.e. if s is much
smaller than a wavelength, the electric field on the slot aperture can be approximated to be constant. For
the uniform electric field �Ex,

M = �Exx̂� ẑ = ŷMz (15)

by the equivalence principle. Moreover, as the infinitely large conducting plate at z = 0 may be removed
according to the image theory, the structure of Fig.2(a) can be equivalently replaced by the structure
of Fig.2(b), where the constant magnetic current of width s is placed on the central plane inside the
rectangular dielectric with width W and hight 2H .

The PCMM is applied to the structure of Fig.2(b), and the directive pattern has been calculated.
Also, HFSS is applied to the structure of Fig.2(a) to obtain the directive pattern for comparison. The
HFSS is only available to the analysis of finite space, hence the conducting plate of Fig.2(a) is replaced
by the finite (3:3�0� 3:3�0) conducting plate in this analysis. The dielectric is homogeneous and of the
relative permittivity of "r = 4.

Fig.3 (a)�(d) are the directive patterns for the structures with dielectric width W = 0:5�0, hight
H = 0:5�0 and the slot width s = 0:1�0, and the slot position x0 from 0, 0:1�0; 0:125�0; 0:2�0 from the
center. They are normalized by the respective maximum value. There is a relatively good coincidence
between the PCMM and the HFSS, including the behavior of the null point movement accompanying
the slot position change. However, there seems to be about 10dB difference near � = �90�; 90� caused
by the different models of the conducting plate which is infinite in the PCMM and finite in the HFSS.
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Figure 2: Dielectric loaded slot antenna



4 Conclusion
This paper described how the PCMM is applied to the numerical analysis of antennas consisting of
dielectric materials. An example for the TEy incident dielectric cylinder of infinite extent is given
with some care which has to be paid in the application. It has been confirmed that the PCMM has
several merits over the existing analytical method. First, it does not produce an non-physical solution
of resonance, which is peculiar to the boundary element method for the problem treating dielectric.
Secondly, the form of the integral equation keeps the same form irrespective to the position of the
source, inside or outside of the dielectric, hence the program coding can effectively be done.

Although this paper treated only the 2D problems, it is expected that the 3D problems will also be
treated with the similar merits and conveniences as in the 2D problem, and will be applied for the design
of the next generation high frequency antennas.
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Figure 3: Change of directive patterns in dB, when slot position changed (W = H = 0:5�0)


