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1.Introduction 
 Coupling coefficient of resonators is necessary information for designing an rf bandpass filter. It is 
usually calculated or measured using two split resonant frequencies of originally the same value before 
coupling. Considering the versatility of numerical resonant frequency calculation due to the recent 
advance of EM simulators , the split frequency method looks the best way for determining the 
coupling coefficient of any resonator structures. 
 Our proposal, however, is to use the EM field obtained by the simulators instead of the resonant 
frequencies. Its advantage is the decomposition of electric and magnetic components of the coupling 
coefficient in compensation for the simplicity of calculation. The principle is based on the perturbation 
theory[1], which has never been adopted for the calculation of coupling coefficients. The 
electromagnetic field of a single resonator is calculated and the coupling is given by the ratio of the 
difference of electric and magnetic energy stored in the limited evanescent region normalized by the 
total stored energy. 
 The theory will be derived at first and an example is shown which can be calculated analytically to 
demonstrate the feasibility of the theory. After that, a numerical calculation will be shown to compare 
the proposed method with the conventional counterpart. 
 
2.Theory  
 Two identical resonators couple each other in a closed or open space as shown in Fig.1. The 
symmetry plane is located in the middle of the resonators. Electric and magnetic walls are assumed at 
the symmetry plane to calculate the odd and even mode resonant frequency in the split frequency 
method, respectively. Those frequencies are a little different from the original uncoupled state. 
Therefore, the structures with those walls are considered the perturbed state from the single resonator 
shown in Fig.1(b). 
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The electromagnetic field and the resonant (angular) frequency of the single resonator are assumed Eo, 

Ho and ωo, respectively, while those for the perturbed one are E, H and ω.. Maxwell equations hold for 
both structures  
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and hence, integration of (5) ,(6) in V and addition of those will afford the relation 
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and thus, only the surface integral on S2 will be important 

1) When S2 is the electric wall, n✕E=0 and the resultant term of the left hand side of eq.(7) is  

(9) ∫ ⋅×=
2

d)( *
0S

SI nEH  

2) When S2 is the magnetic wall, n✕H=0 holds and 

(10)   ∫ ⋅×=
2

d)( *
0S

SI nEH

remains finite. Considering the electromagnetic fields on the perturbed surface S2 are twice as large  
as the non-perturbed values, we obtain the resonant frequency for the odd and even mode cases 
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According to the definition of coupling coefficient, 
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(13) 

For fast calculation of k, the surface integral expression is more convenient, while the volume integral 
expression will give the electric and magnetic contributions separately. 
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3. Analytical demonstration 
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The structure shown in Fig.2 is so simple that it can be treated analytically. The EM fields of TE10δ 
mode are described in the following for a single resonator [2] when the origin 0 of the z direction is 
taken at the center of the resonator as shown in Fig.2(b) 
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Due to the boundary conditions at z=±d/2, the following relations are derived 
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The total coupling coefficient is given by eq.(13), that is,  
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(b) Coordinate system for calculation
x

y dz

(a) Rough sketch

Fig.2 Dielectric resonators in a rectangular waveguide
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(Region II)  
(Region I)  
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gral in eq.(13). 
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The dispersion relations for the odd and even symmetry in Fig.1(a) are analytically obtained [2], 
respectively,  
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Therefore, solving these equations for the resonant frequency ωod and ωev by use of eq.(17), the 
coupling coefficient is given by  
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A numerical example is shown in Fig.3 for the structure in Fig.2 with a=20.0mm, b=10.0mm, 

d=10.0mm, εr=16.4. Figure.3(a) shows the contribution of the electric and magnetic coupling, while 
Fig.3(b) depicts the coincidence of the two results given by eqs.(13) and (25). 
 

0 10 2010-2

10-1

100

D[mm]

C
ou

pl
in

g 
co

ef
fic

ie
nt  energy integral method

 frequency method

0 10 20-0.1

0

0.1

0.2

D[mm]

C
ou

pl
in

g 
co

ef
fic

ie
nt  kh

 k
 ke

 
 
 
 
 
 

(b) Comparison of two calculation method(a) Contribution of electric and magnetic coupling 
Fig.3 Coupling coefficient as a function of resonator distance for structure in Fig.2.  
(a=20.0mm, b=10.0mm, d=10.0mm, εr=16.4) 

 
4. Conclusion 

We have proposed a new method for calculating the coupling coefficient between two resonators. It 
needs the EM field distribution for a single resonator instead of the twice calculation for the even and 
odd mode excitation of coupled resonators. In addition, it discriminates between the electric and 
magnetic contribution to the coupling. The physical picture of coupling scheme will help to design a 
variety of bandpass filters. 
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