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1 Introduction

The analysis of wave propagation in dispersive media was initiated by Sommerfeld and
Brillouin[1] as a verification of Einstein’s special relativity. They proved that no wave can
propagate faster than light, but gave little about the physical meaning of superluminal group
velocity. Consequently, the superluminal group velocity had been taken by almost all physi-
cists as physically meaningless concept [2].

Against this, Garrett and McCumber[3] proved that a Gaussian pulse can travel at a
velocity equal to the group velocity even when it is superluminal or negative. Although their
result is remarkable, their analysis can be applied only to the initial stage of the propagation.
Tanaka et al.[4] analyzed the propagation of Gaussian wave packet in a Lorentz medium to
investigate more deeply the physical meaning of group velocity in the anomalous dispersion
band. However, the use of the saddle point method seems to have prevented them from
carrying out the precise analysis of the important early stage propagation.

Another problem of the past works for the investigation of the propagation velocity is to
have given much more weight to the group velocity than to the energy velocity. In order to
recognize the subtle difference between the group and energy velocities, it is very useful to
use inverse velocity (will be called index) instead of velocity itself.

In this paper we shall show that the combination of high precision numerical Laplace
transformation[5] and the use of inverse velocity give deeper insight into the propagation
velocity.

2 Propagation of a Gaussian wave packet in a Lorentz medium

we shall consider the propagation of Gaussian wave packet in a single resonant Lorentz
medium whose electric susceptibility is given by

χ(s) = ω2
p/(s2 + 2γs + ω2

0) (1)

where ωp is the plasma frequency, γ the loss factor, and ω0 the resonant frequency of the
Lorentz medium.

Using χ(s), the relative permittivity ε(s), the refractive index n(s), the propagation func-
tion K(s), the attenuation constant α, the group index Ig, and the energy index(1)Ie are
expressed as

ε(s) = 1 + χ(s), n(s) =
√

ε(s)
K(s) = sn(s)/c, α(ω) = [<[K(s)]]s=iω+0

(1)Our Ie is expressed by χ(s), and a little different from that of Ref[1].
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Ig(ω) := c/vg = [<[∂sK(s)]]s=iω+0

Ie(ω) := c/ve = [(1 + |ε(s)|+ |∂s[sχ(s)]|)/<[(2n(s)]]s=iω+0 (2)

where c is the velocity of light, vg the group velocity, ve the energy velocity, ∂s the differen-
tiation with respect to s, and s = iω + 0 means that the frequency ω on the imaginary axis
is approached from the right-hand side.

If [t, x] denotes the space-time coordinates, the propagation of the wave packet is described
by the following s-domain equation:

F (s, x) = F (s, 0)e−xK(s) (3)

where F (s, 0) is the Laplace transform of the pulse at the starting point [t, x] = 0.
Genuine Gaussian pulse (gGp) has no initial and end points, so that, when we express

it numerically, we must use some approximation which has an initial and an end point. we
shall use here the m-th pseudo Gaussian pulse defined by

pgp(t,m, σ) := sin(t/(∆
√

m))n (4)

where m is an positive integer called the order of gpg, and ∆ is the standard deviation of
the corresponding gGp. The 36th pgp is sufficient for our purpose, so we shall use the initial
pulse

f(t, 0) = pgp(t, 36, ∆) exp(ωct) (5)

where ωc is the carrier frequency.

3 Results and discussion

For simplicity, we shall use the following normalized variables, taking the resonant frequency
as basis:

Ωp := ωp/ω0, G := γ/ω0 Ωc := ωc/ω0, D := ∆ω0 X := xω0/c, T := ω0t, Ω := ω/ω0

Because the results depend critically on the values of parameters, for clear discussion it is
necessary to fix the parameters. According to Ref.[4], we take the following parameters:

Ωp = 0.1, G = 0.02, Ωc = 1, D = 100
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Figure 1: (a) Index representation, (b) Velocity representation
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In Fig.1(a) we give the group index Ig, the energy index Ie, and attenuation constant (8
times enlarged) of our Lorentz medium. The following two items are of special importance
for the later discussion.

(1) At each frequency the energy index is always greater than the group index.
(2) The group index has a maximum (≈ 1.8)
These important informations are difficult to obtain from the figure represented by veloc-

ities (see Fig.1(b)).
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Figure 2: The spectra of signal at X =
0, 50, 100, 150
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Figure 3: The waveforms of the signal at
X = 0, 50, 100, 150

Fig.2 shows the spectra at X = 0, 50, 100, 150. Because of the large attenuation of the
carrier frequency, the spectra become double-humped, resulting in complex waveforms (see
Fig.3). The peaks of the pulse move at speeds different from that of the body of pulse.

Accordingly, the velocity of the peak point cannot be used to define the velocity of signal.
To overcome this situation, we define the arrival time Tb and the index (inverse velocity)) of
the barycenter of the pulse by

Tb(X) :=
∫

T |f(T,X)|2dT/

∫
|f(T, X)|2dT

Ib := ∂XTb(X) (6)

Fig.4 (a) shows the trajectory of barycenter of the pulse where, contrary to convention,
the arrival time Tb of pulse is plotted as a function of the distance X. Fig. (b) is the
corresponding barycenter index. We can see that the barycenter index becomes greater than
the maximum (≈ 1.8) of the group index after X ≈ 35. This is very important because it
implies that we can no longer explain the propagation by group velocity only.

In order to get a better understanding, we shall use the mean group and energy indexes
and the mean attenuation (denoted by Jg, Je, and Ja respectively) defined by

Jg(X) :=
∫

Ig(Ω)|F (iΩ, X)|2dΩ/

∫
|F (iΩ, X)|2dΩ

Je(X) :=
∫

Ie(Ω)|F (iΩ, X)|2dΩ/

∫
|F (iΩ, X)|2dΩ

Ja(X) :=
∫

α(Ω)|F (iΩ, X)|2dΩ/

∫
|F (iΩ, X)|2dΩ (7)

We have plotted Jg, Je. amd Je − 24Ja in Fig.4 (b). We can see: (1) the initial barycenter
index Ib is equal to the mean group index Jg ≈ −3.6, (2) soon after, it increases more rapidly
than Jg, (3) it exceeds the maximum of the group index(≈ 1.8) and approaches the mean
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Figure 4: (a) The trajectory of barycenter of pules, (b) the barycenter index

energy index Je, (4) after that, it decreases gently in parallel with Je; it agrees very well with
the curve Je − 24Ja.

These results show that there are cases which cannot be explained by the group velocity
and that the energy velocity and attenuation are more essential.

According to our interpretation, every frequency component of the pulse moves at its own
energy velocity which was given by Brillouin and never exceeds the light velocity even when
the group velocity is superluminal.

However, roughly speaking, a pulse can make its barycenter move faster than the energy
velocity by discarding or attenuating some of its rear part. If the attenuation is large enough,
the barycenter velocity can become superluminal or negative. This is why a superluminal
propagation always accompany a large attenuation.

The large attenuation of early stage in Fig.4(b) makes the initial barycenter velocity neg-
ative or superluminal. However, because the frequency components with larger attenuation
decrease more rapidly leaving the frequency components with smaller attenuation, the mean
attenuation becomes smaller.

Accordingly, the rate of discarding the rear part decreases and the barycenter velocity
approaches the energy velocity. At this stage,it is clear that the barycenter velocity is mainly
controlled by the energy velocity and the attenuation and cannot be explained by the group
velocity.

As the attenuation becomes still smaller the discarding of the rear part becomes smaller,
which means that the energy, group, and barycenter velocities become all equal.
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