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1. Introduction

Since the advent of the measured equation of invariance (MEI) [1,2], the method has been
applied by numerous researchers to scattering and IC interconnect problems [3,4,5].
Recently, the MEI method has been applied to antenna problems as well [6,7,8], which
include wire antennas, reflector antennas and antenna arrays.  This paper summarizes those
developments in the published and yet unpublished papers.

2. WireAntennas

The ability of solving wire antennas of arbitrary shape is very specia for the method of
moments (MoM). No other method can solve those problems as efficiently as the MoM.
The
purpose of this investigation is to show that MEI method is flexible enough to include wire
structures within its solution range.  One would not expect it to replace MoM, even though
the MEI method offers the advantages of higher speed and less storage requirement than the
MoM. Simply because the MoM is dready very effective, so the extra advantages are no
longer very attractive to most the practical engineers.  Nevertheless, in the spirit of research
in methodology, an aternative to the MoM is till aworthwhile subject.  In the followings,
we shall discuss the procedures of applying the MEI to wire antennas.

The MEI method is based on the solution to differential equations.  The differential
operators become very singular on the surface of a very thin wire and the spatial meshes
required to fit the surface of a curved wire are also very difficult to construct.  So, the MEI
was initial not a good candidate to solve wire antennas. However, in the research of
applying the MEI method to 3-D problems, it was considered necessary to do on surface MEI
(OSMEI), so as to minimize the number of unknowns, which was expected to be very large
for any practical 3-D object. In doing so, one immediately realized that the problem of mesh
construction had disappeared and the OSMEI should be as simple as the MoM in handling the
curved wire problem. The conventional MEI method relates the tangential magnetic and
electric fields in discreet form in a linear relation. To find the coefficients of the linear
equations, we need to find the fields from Metrons [2].  The spatial derivatives relating E
and H are the difficult part in the application, because they are very unstable on the surface of
thethinwire. The key to alleviate this problem is to replace the relations between E and H,
by those of A and H. Sincethein integration for A is much less singular than that of E, the
resulting equations are very stable.

The MEI method for wire antennas, therefore, starts with the relation,
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Figure (1) shows the resulting matrix of the MEI equations, and Figs.(2) and (3) show the
input impedance and currents calculated by the MEI method as compare to those by the
MoM. They agree remarkably well.  The method applies equally well for wire antennas of
other shapes.

Parabolic Reflector Antennas

The parabolic reflector antennais another example of the application of MEI.  Because,
the reflector type antennas are normally fairly large, the sparsity of the matrix is essentia to
the numerical solution of the problem.  Conventionally, such antennas are solved by either
physical optics or by geometrical optics. Numerica solution to the problem has never been
tried. We have solved the parabolic reflector antenna with the diameter of the aperture as
largeas80 A .

In this application, we have used the coupled azimuthal potentials to formulate the fields,
so only the azimuthal components of the electric and magnetic fields are the unknowns. The
other components can be calculated from them. Unfortunately, this problem was
investigated before we perfected the OSMEI, so three layers of finite difference meshes are
used between the antenna surface and the mesh boundary.  Using the OSMEI, we should be
able to solve a reflector antenna of aperture dimension at lease 240 in diameter with the
same effort.

As expected the numerical solutions of the current densities on the antenna surface is
amost identical to the physical optics (PO) solutions except near the edge of the reflector,
where the normal components of the current densities exhibit large standing waves, as shown
inFig. (4). Those standing waves are known to be present but not predictable by PO. They
have no consequence on the main beam of the antenna but may have some effects on the side
lobes, and are essential in computing the loss of the antenna.

Large Antenna Arrays

Antenna array theories help us to predict the radiation patterns when the current at each
antennaisgiven. In readlity, the currents are not the known quantities. The driving voltages
at the terminals of the antennas are the known quantities. Due to mutual couplings, the
impedance at each antennais not exactly known. In order to solve alarge coupled array, one
has to use the MoM to find the amplitude and the phase of the current of each antenna.  If we
simplify the problem to one unknown per antenna, this array may still present a very large
matrix for the designers. In the process of optimizing the pattern, one may need to solve this
large matrix many times over. In this situation, we may use the MEI method to reduce the
MoM matrix to sparse matrices.

The principle of the thinning of MoM matrix is dightly different from the origina idea of
MEI which is based on finite difference formulation.  The unknowns in the array problem
are not connected, nevertheless they are related by mutual couplings.  The objective in this
case isto thin the matrix
Zl=V (4

where, the vector | represents the terminal currents of the antennas, Z is the impedance matrix
obtained from the method of MoM, and the vector V represents the driving voltages at the
antennaterminals. Our approach to thin the Z matrix isto split it in the following form,



Al=BV (5)
where, A and B are sparse matrices. Equations (4) and (5) are combined to give

[A-BZ]1=0 (6)

It is noticed that our process is not to thin Z, but to split it into two sparse matrices, because
the approximation B*A = Z, is not to replace the full matrix Z by a sparse matrix, in that B™
isnot sparse even though B issparse.  This process is superior to that of thinning the matrix
by the wavelet approach, which involves replacing the full matrix by a sparse matrix by
regrouping the currents in terms of wavelets.

To find the matrix A and B, we use the process of measure as proposed in the MEI method.
The bandwidth of the matrices depends on the metrons used. It has been found that complex
exponential matrons of finite support have been quite effective in reducing the bandwidth of
the matrices. Good results have been obtained with the reduction of the matrix to 0.61% of
itsoriginal number of elements.  Figures (5) and (6) show the radiation patternsin the E and
H planes respectively of a 20 by 40 dipole array as calculated by the MEI method as compare
to those using the direct MoM.  The driving voltages are set up to give a main beam at 0
degree in the E-plane and 30 degree in the H-plane.  Excepting the discrepancies at the
radiation angle larger than 60 degree of the H-Plane, the MEI method almost reproduces those
of the MoM. And, the errors are at locations where the side lobes are less than 20 db of the
main |lobe.

Conclusion

We have shown the recent progress of the MEI method in antenna problems including wire
antennas, reflector antennas and antenna arrays.  Eight years after the birth of the MEI
method, it is still not a method generally accepted by the antenna community. Wefed itisa
method with great potential to save computationa time and memory, but it has to compete
with ever faster and larger cheap computers. The practitioners prefer to let the new
computers solve larger problems for them than to learn new methods.  However, to the
theoreticians, finding new methods is by itself a satisfaction, and we believe that even the
speed and memory of computers increase every year, there is still a limit to the size of
problems they can solve. Eventually, the errors accumulated by the large number of
arithmetical operations will come to haunt the engineers. By then, one will find that the
efficient methods are indispensable.
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Figure (1) The resulting matrix of the ME! equations Figure (2) and (3) The input impedance and currents calculated by the MEI method as compare to those by the MoM
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Figure (4) The radial component of the current densities Figure (5) The radiation patterns in the E-plane of a 20 by 40 dipole array
as calculated by the MEI method, comparing to those uging the direct

MoM
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Figure (6) The radiation patterns in the H-ptane of a 20 by 40 dipole array
as calculated by the ME] method, comparing to those using the direct
MoM
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