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1. Introduction
Electromagnetic waves on infinite linear periodic arrays of lossless penetrable spheres can

be conveniently analyzed using the source scattering-matrix framework [1] and vector spherical
wave functions. Our investigation of these arrays is motivated by the theoretical demonstra-
tion that a doubly negative (DNG) medium can be formed by embedding an array of spherical
particles in a background matrix [2]. In this paper we apply the spherical-wave source scattering-
matrix approach to obtain an implicit transcendental equation for the propagation constants of
the traveling waves that can exist on infinite linear periodic arrays of small penetrable (mag-
netodielectric) spheres. The spheres are assumed lossless and small enough so that only the
electric and magnetic dipole vector spherical waves are significant, but no other restrictive ap-
proximations are made. The paper focuses on determining the kd−βd diagram for the traveling
waves that can be supported. Backward waves and waves with low group velocity are shown to
be supportable in narrow wavebands by arrays composed of spheres with appropriately chosen
permittivity and permeability. Interestingly, for certain spheres and separations it is possible to
have two different traveling waves supported by the array.

2. Analyis
We consider a linear periodic array of lossless penetrable spheres with radius a, and relative

permittivity and permeability εr and µr. The separation between adjacent sphere centers is
d. The array axis is taken to be the z axis of a cartesian coordinate with the sphere centers
at x = 0, y = 0, z = nd, n = 0,±1,±2, · · ·. Harmonic time dependence exp(−iωt), ω > 0, is
assumed with the free space wave number k = ω/c, c the vacuum speed of light.

We assume that a traveling wave exp(iβz) with real β > 0, propagating in the z direction,
can be supported by the array and obtain an equation that relates β to k, d, a, εr and µr. In
broad outline we proceed as follows. The EM field incident on each sphere of the array gives rise
to a field scattered from that sphere with the scattered field related to the incident field by the
Mie coefficients. The scattered field is in turn incident on all the other spheres of the array. The
desired equation for β is then obtained by equating the field incident on a sphere of the array
with the sum of the fields scattered from all the other spheres of the array. Accordingly the
first step in the derivation of the equation for β is to obtain an expression for the field scattered
from a sphere with center x = 0, y = 0, z = nd, given the field incident on that sphere. To do
this we employ a local spherical polar coordinate system with origin at the sphere’s center and
whose corresponding cartesian axes are parallel to those of the global coordinate system. The
EM field incoming on the sphere can in general be expanded as a weighted sum of divergenceless
vector spherical wave functions M(1)

lm(r) and N(1)
lm(r), l = 1, 2, · · · ,∞,m = −l, · · · , l, [3],[4] whose

radial dependence is given by the spherical Bessel function jl(kr). The EM field scattered from
the sphere can be expressed as a weighted sum of vector spherical wave functions M(2)

lm(r) and
N(2)

lm(r) with radial dependence given by the spherical Hankel function h
(1)
l (kr). We assume that

the spheres are small enough that only the electric and magnetic dipole functions, l = 1, need
be included, and also assume that the incident EM field at the center of the sphere is polarized
with the electric field in the x direction and the magnetic field in the y direction. Then the
incoming EM field can be represented as

E0
n(r) = an

1,−N(1)
1,−(r) + an

1,+M(1)
1,+(r) (1a)

H0
n(r) = −iY0

[
an

1,−M(1)
1,−(r) + an

1,+N(1)
1,+(r)

]
(1b)
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and the scattered EM field as

Esc
n (r) = bn

1,−N(2)
1,−(r) + bn

1,+M(2)
1,+(r) (2a)

Hsc
n (r) = −iY0

[
bn
1,−M(2)

1,−(r) + bn
1,+N(2)

1,+(r)
]

(2b)

where Y0 is the free space admittance,

N(i)
1,±(r) = N(i)

1,−(r) ±N(i)
1,+(r), M(i)

1,±(r) = M(i)
1,−(r) ±M(i)

1,+(r) (3)

and the coefficients bn
1,−, bn

1,+ of the scattered waves are related to the coefficients an
1,−, an

1,+ by

bn
1,− = bsc

1 an
1,−, bn

1,+ = asc
1 an

1,+ (4)

where bsc
1 and asc

1 are the magnetic and electric dipole Mie scattering coefficients, respectively
[5]. The fields [E,H] = [N(2)

1,−(r),−iY0M
(2)
1,−(r)] and [M(2)

1,+(r),−iY0N
(2)
1,+(r)] are proportional to

the fields radiated by an infinitessimal x directed electric dipole and y directed magnetic dipole,
respectively.

It is convenient to write the scattering equations (4) in the normalized form

bn
− = S−E0

nx, bn
+ = S+H0

ny/Y0 (5)

where bn
− and bn

+ are the respective coefficients of exp(ikr)/(kr) in the transverse components
of the scattered electric fields bn

1,−N(2)
1,−(r) and bn

1,+M(2)
1,+(r), S− and S+ equal −i(3/2)bsc

1 and
−i(3/2)asc

1 , respectively, and E0
nxx̂ and H0

nyŷ are the electric and magnetic incoming fields
at the center of the nth sphere. Making use of explicit expressions for the vector spherical
wave functions [4], (5) implies that the scattered electric and magnetic fields on the array axis
corresponding to an incident electric field equal to E0

nxx̂ at the nth sphere’s center are

Esc
n (z) = bn

−
eik|z−nd|

k|z − nd|

(
1 +

i
k|z − nd|

− 1
(k|z − nd|)2

)
x̂ (6a)

Hsc
n (z) = ±Y0b

n
−

eik|z−nd|

k|z − nd|

(
1 +

i
k|z − nd|

)
ŷ, z >

< nd (6b)

and that the scattered fields on the array axis corresponding to an incident magnetic field equal
to H0

nyŷ at the nth sphere’s center are

Esc
n (z) = ±bn

+

eik|z−nd|

k|z − nd|

(
1 +

i
k|z − nd|

)
x̂, z >

< nd (7a)

Hsc
n (z) = Y0b

n
+

eik|z−nd|

k|z − nd|

(
1 +

i
k|z − nd| −

1
(k|z − nd|)2

)
ŷ. (7b)

Note that even though there is no cross-coupling of the electric and magnetic dipole modes
in the scattering equations (4), the two dipole modes are coupled through the scattered fields
since the EM field scattered by each sphere in response to either an x-directed electric field or
a y-directed magnetic field incident on the sphere has both an x-directed electric field and a
y-directed magnetic field on the array axis.

Assuming that the array supports a traveling wave exp(iβz) with a real propagation constant
β to be determined, the coefficients bn

− and bn
+ are equal to b0

− exp(iβnd) and b0
+ exp(iβnd),

respectively. Since the x-directed electric field E0
nxx̂ and y-directed magnetic field H0

nyŷ incident
on the nth sphere at the sphere’s center equal the sum of the on-axis x-directed electric field
and y-directed magnetic field, respectively, scattered from all the other spheres in the array, we
can use (6) and (7) to obtain the pair of on-axis scattering equations

(kd)3 = S− (Σ1 + pΣ2) , (kd)3 = S+

(
Σ1 +

1
p
Σ2

)
. (8)
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where p = b0
+/b0

−, and closed forms are available for the two summations

Σ1 =
∞∑

m=1

(
ei(k+β)dm + e−i(β−k)dm

m

)(
(kd)2 +

ikd

m
− 1

m2

)
(9a)

and

Σ2 = kd
∞∑

m=1

(
ei(k+β)dm − e−i(β−k)dm

m

)(
kd +

i
m

)
. (9b)

We can then solve for p in each of the two equations (8) and equate the resulting expressions,
thereby obtaining

(kd)3 − S−Σ1

S−Σ2
=

S+Σ2

(kd)3 − S+Σ1
(10)

The two sides of (10) are real quantities and hence (10) can be easily solved numerically for βd
given kd.

4. RESULTS
Computer calculations have been performed to illustrate the theory of traveling waves on

linear periodic arrays of small lossless spheres that we have presented. In Fig. 1 we show some
kd−βd diagrams for a linear periodic array of spheres with εr = µr = 10 for ka equal to several
different resonances of the Mie scattering coefficients. The smallest value of kd in these diagrams
must be greater than 2ka, otherwise the spheres will overlap. We observe that the curves end
when βd = kd, that is, when the traveling wave propagation constant β equals the free-space
wave number k. The importance of having ka equal to, or close to, a resonance of the Mie
coefficients is intuitively clear since a traveling wave with β greater than k cannot be excited
without a high degree of scattering coupling between the spheres composing the array. In Fig.
2 we show the kd − βd diagram for an array of spheres with εr = 10, µr = 1, and ka = 1.1.
Note that for 2.337 < kd < 2.346 there are two values of βd corresponding to each value of kd
meaning that the array can support two different traveling waves.

As an example of calculations with varied frequency, in Fig. 3 we show the kd− βd diagram
for a linear array of spheres with εr = 10, µr = 10, and a/d = 0.45. (The dotted line shows
βd = kd.) We note that there are four sections of the diagram, each section corresponding to a
narrow window of ka in the vicinity of one of the resonances of the Mie scattering coefficients
at ka = 0.405, 0.693, 0.988, and 1.299. Each section begins and ends when βd = kd. Each of the
four sections consists of two branches, the lower branch with βd increasing from kd to π as kd
increases, and the upper branch with βd decreasing from π to kd as kd continues to increase.
The phase velocity of the traveling wave is positive on both branches, while the group velocity
(dk/dβ)c of the traveling wave is positive on the lower branch and negative on the upper branch.
Hence the traveling waves corresponding to the upper branches of the four sections of the kd−βd
diagram are “backward” traveling waves. The group velocity of the traveling wave in the low-
est branch of Fig. 3 is very small in the interval between ka = .3925 and .3928 as shown in Fig. 4.
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Figure 1: kd−βd diagrams for traveling waves
on array of spheres, εr = 10, µr = 10.
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Figure 2: kd − βd diagram for traveling wave
on array of spheres, εr = 10, µr = 1, ka = 1.1.
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Figure 3: kd−βd diagram for traveling wave on
array of spheres, εr = 10, µr = 10, a/d = 0.45.
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Figure 4: Lowest branch of kd−βd diagram of
Fig. 3.
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