C-5-3 AN EXACT SOLUTION OF THE FOURTH-ORDER MOMENT EQUATION FOR A PLANE WAVE IN A PARTICULAR CASE

Mitsuo TATEIBA

Department of Electronic Engineering, Nagasaki University 1-14 Bunkyo-machi, Nagasaki 852, Japan

Abstract — The fourth-order moment equation is exactly solved for a plane wave propagated through the random medium with a particular correlation function. This solution shows precisely the small variance of the irradiance caused by wave-form distortion, and hence gives the range of simple observation of spot dancing.

I. Introduction

In the present paper, we solve exactly the fourth-order moment equation for a plane wave in the case $B(r,z)=\frac{7}{2}\,a_{2n}(z)r^{2n},$ by using well-known techniques. This solution affords the condition for the aforementioned spot dancing to be observable, a criterion for examining the accuracy of approximate solutions in a more general case, and so on.

II. Formulation

Let u(r,z) represent an SFS wave in the medium with the refractive index $n=n_0(1+\delta\varepsilon(r,z))^{1/2}$ where n_0 is a constant and $\delta\varepsilon(r,z)$ a Gaussian random function satisfying

$$\langle \delta \varepsilon(\mathbf{r}, \mathbf{z}) \rangle = 0$$
 $\langle \delta \varepsilon(\mathbf{r}_1, \mathbf{z}_1) \delta \varepsilon(\mathbf{r}_2, \mathbf{z}_2) \rangle = B(\mathbf{r}_1 - \mathbf{r}_2, \mathbf{z}_1 - \mathbf{z}_2)$

in which the angular brackets denote the ensemble average. The fourth-order moment of the SFS wave is defined in a r-plane, z = constant, as

$$M_{22}(s_1, s_2, t_1, t_2, z) = \langle \prod_{i=1}^{2} u(s_1, z) \prod_{i=1}^{2} u^*(t_1, z) \rangle$$

where the asterisk denotes complex conjugate.

Changing the variables si and ti into r-i and ri:

$$r_{-i} = s_i - t_i$$
 $r_1 = (s_1 - s_2 + t_1 - t_2)/2$ $r_2 = (s_1 + s_2 + t_1 + t_2)/4$

and using D(r,z) defined by

$$D(r,z) = 2(B(0,z) - B(r,z))$$
,

we can write the fourth-order moment equation as

$$\begin{aligned} & \{ \frac{\partial}{\partial z} - j \frac{1}{k} [(\nabla_{r_1} + \frac{1}{2} \nabla_{r_2}) \cdot \nabla_{r_{-1}} + (-\nabla_{r_1} + \frac{1}{2} \nabla_{r_2}) \cdot \nabla_{r_{-2}}] \} M_{22}(r_1, r_{-1}, z) \\ & = [-\frac{k^2}{4} \int_0^z dz_1 (D_1(r_{-1}, z_1) + D_2(r_1, r_{-1}, z_1))] M_{22}(r_1, r_{-1}, z) \end{aligned}$$

$$M_{22}(\mathbf{r_{i}},\mathbf{r_{-i}},0) = M_{22}^{in}(\mathbf{r_{i}},\mathbf{r_{-i}},0) . \tag{1}$$

Here, the operators ∇_{r_i} , $\nabla_{r_{-i}}$ represent the two-dimensional gradient, and

$$D_1(r_{-1},z) = D(r_{-1},z) + D(r_{-2},z)$$

$$D_{2}(\mathbf{r}_{1},\mathbf{r}_{-1},z) = D(\mathbf{r}_{1} + \frac{\mathbf{r}_{-1} + \mathbf{r}_{-2}}{2},z) + D(\mathbf{r}_{1} - \frac{\mathbf{r}_{-1} + \mathbf{r}_{-2}}{2},z)$$

$$- D(\mathbf{r}_{1} + \frac{\mathbf{r}_{-1} - \mathbf{r}_{-2}}{2},z) - D(\mathbf{r}_{1} - \frac{\mathbf{r}_{-1} - \mathbf{r}_{-2}}{2},z)$$

$$M_{22}^{in}(\mathbf{r}_{1},\mathbf{r}_{-1},z) = \prod_{i=1}^{2} u_{in}(\mathbf{s}_{1},z) \prod_{i=1}^{2} u_{in}^{*}(\mathbf{t}_{1},z)$$

where $u_{in}(r,z)$ is a wave function in the non-random ($\delta \epsilon \equiv 0$) medium.

Let us define the Fourier transform and its inverse as

$$\hat{f}(k) = \int f(r) \exp(-j\kappa \cdot r) dr \qquad f(r) = (2\pi)^{-2} \int \hat{f}(\kappa) \exp(jr \cdot \kappa) d\kappa .$$

Then, taking the Fourier transform of (1) with respect to r_i , and putting

$$r_{-i} = \rho_i + z[(-1)^{i+1}\kappa_1 + \kappa_2/2]/k$$
,

we get

$$\frac{\partial}{\partial z} \hat{M}_{22}(\kappa_{1}, \rho_{1} + \frac{z}{k}((-1)^{1+1}\kappa_{1} + \frac{1}{2}\kappa_{2}), z) = \left\{-\frac{k^{2}}{4}\int_{0}^{z} dz_{1}[D_{1}(\rho_{1} + \frac{z}{k}((-1)^{1+1}\kappa_{1} + \frac{1}{2}\kappa_{2}), z_{1}) + \hat{D}_{2}(j\nabla_{\kappa_{1}}, \rho_{1} + \frac{z}{k}((-1)^{1+1}\kappa_{1} + \frac{1}{2}\kappa_{2}), z_{1})]\right\} \hat{M}_{22}$$

$$\hat{M}_{22}(\kappa_{1}, \kappa_{-1}, 0) = \hat{M}_{22}^{in}(\kappa_{1}, \kappa_{-1}, z) . \tag{2}$$

The solution of the above equation is written as

$$\hat{M}_{22}(\kappa_{1},r_{-1},z) = \sum_{n=0}^{\infty} \hat{M}_{22}^{(n)}(\kappa_{1},r_{-1},z)$$

$$\hat{M}_{22}^{(0)} = \hat{M}_{22}^{1\dot{\eta}}(\kappa_1, r_{-1}, z)A(z)$$

$$\hat{M}_{22}^{(n)} = A(z) \int_{0}^{z} dz_{1} \int_{0}^{z_{1}} dz_{2} \cdots \int_{0}^{z_{n-1}} dz_{n} [(A^{-1}(z_{1})D_{S}(z_{1})A(z_{1}))(A^{-1}(z_{2})D_{S}(z_{2})A(z_{2}))]$$

$$\cdots (A^{-1}(z_n)D_s(z_n)A(z_n))] M_{22}^{in}(\kappa_1, r_{-i}, z)$$
 (3)

in which

$$D_{S}(z_{m}) = -\frac{k^{2}}{4} \int_{0}^{z_{m}} dz' \hat{D}_{2}(j\nabla_{\kappa_{1}}, r_{-1} - \frac{z - z_{m}}{k}((-1)^{1+1}\kappa_{1} + \frac{1}{2}\kappa_{2}), z')$$
 (4)

$$A(z_m) = \exp\left[-\frac{k^2}{4}\int_0^{z_m} dz' \int_0^{z'} dz'' D_1(r_{-1} - \frac{z - z'}{k}((-1)^{1+1}\kappa_1 + \frac{1}{2}\kappa_2), z'')\right]. \quad (5)$$

Noting that ∇_{κ_1} in D_s operates only \hat{M}_{22} in (2) and that D(r,z), in general, is expressed as

$$D(\mathbf{r},z) = \sum_{n=0}^{\infty} b_{2n}(z) r^{2(n+1)} \qquad b_{2n}(z) = \left[\nabla_{\mathbf{r}}^{2(n+1)} D(\mathbf{r},z) \right]_{\mathbf{r}=0} / \left[(2n+2)!! \right]^{2}, \quad (6)$$

we have

$$D_{s}(z_{m}) = 2 \sum_{n=0}^{\infty} B_{2n}(z_{m}) \sum_{g=1}^{n+1} {2(n+1) \choose 2q} \left[(\frac{r_{-1} + r_{-2}}{2} - \frac{z - z_{m}}{2k} \kappa_{2})^{2q} - (\frac{r_{-1} - r_{-2}}{2} - \frac{z - z_{m}}{k} \kappa_{1})^{2q} \right] \cdot (j \nabla_{\kappa_{1}})^{2(n+1-q)}$$

$$(4')$$

$$A(z_{m}) = \exp\left\{\sum_{n=0}^{\infty} \int_{0}^{z_{m}} dz' B_{2n}(z') \left[(r_{-1} - \frac{z - z'}{k} (\kappa_{1} + \frac{1}{2} \kappa_{2}))^{2(n+1)} + (r_{-2} + \frac{z - z'}{k} (\kappa_{1} - \frac{1}{2} \kappa_{2}))^{2(n+1)} \right]$$
(5')

where

$$B_{2n}(z) = -\frac{k^2}{4} \int_0^z b_{2n}(z')dz'$$
.

III. Irradiance Variance of a Plane Wave in a Particular Case

Consider the plane wave propagation: $u_{in}(r,z) = \exp(jkz)$. Then we have $M_{22}^{in}(\kappa_i,r_{-i},z) = (2\pi)^4 \delta(\kappa_1)\delta(\kappa_2) .$

We are concerned here with the irradiance of the wave and hence put $\mathbf{r}_{-1} = \mathbf{r}_{-2} = \mathbf{0}$. In the case

$$D(r,z) = \sum_{n=0}^{1} b_{2n}(z) r^{2(n+1)}$$
 (7)

the inverse transform of (3) becomes

$$M_{22}^{(n)} = \int d\kappa \, \exp(jr_1 \cdot \kappa_1) [A(z) \int_0^z dz_1 \cdot \cdot \cdot \int_0^{z_{n-1}} dz_n ((A^{-1}(z_1)D_S(z_1)A(z_1)) \cdot \cdot \cdot \\ \cdot (A^{-1}(z_n)D_S(z_n)A(z_n)) \delta(\kappa_1)]$$
(8)

where $A(z_m)$ and $D_s(z_m)$ respectively are

$$D_{s}(z_{m}) = -2 \left(\frac{z - z_{m}}{k} \kappa_{1} \right)^{2} \{B_{0}(z_{m}) + B_{2}(z_{m}) \left[\left(\frac{z - z_{m}}{k} \kappa_{1} \right)^{2} - 6\nabla_{\kappa_{1}}^{2} \right] \}$$

$$A(z_{m}) = \exp \left[\sum_{n=0}^{1} \int_{0}^{z_{m}} B_{2n}(z') \left(\frac{z - z'}{k} \kappa_{1} \right)^{2(n+1)} dz' \right].$$

The application of

$$\int f_1(\kappa) \nabla_{\kappa}^2 f_2(\kappa) \delta(\kappa) d\kappa = f_2(0) \left[\nabla_{\kappa}^2 f_1(\kappa) \right]_{\kappa=0}$$

to (8) leads to the fourth-order moment:

$$M_{22}(\mathbf{r}_{1},z) = \sum_{n=0}^{\infty} M_{22}^{(n)}(\mathbf{r}_{1},z)$$

$$= \sum_{n=0}^{\infty} \int_{0}^{z} dz_{1} \cdots \int_{0}^{z_{n-1}} dz_{n} \{ [-12(z-z_{1})^{2} \int_{0}^{z_{1}} b_{2}(z_{1}') dz_{1}'] \cdots [-12(z-z_{n})^{2} \int_{0}^{z_{n}} b_{2}(z_{n}') dz_{n}'] \}$$

$$= \exp[g(z)] \qquad g(z) = -4 \int_{0}^{z} (z-z')^{3} b_{2}(z') dz' . \tag{9}$$

Then, the irradiance variance σ^2 is given by

$$\sigma^2 = \exp[g(z)] - 1.$$

For example, if $D(r,z) = 2B(0,0)[1 - \exp(-(r/l)^2)] \exp(-(z/l)^2)$ we have

$$b_2(z) = -l^{-4}B(0,0)\exp(-(z/l)^2).$$

Hence

$$g(z) = 4l^{-4}B(0,0) \int_{0}^{z} (z-z')^{3} \exp(-(z'/l)^{2}) dz'$$

$$\approx 2\sqrt{\pi} B(0,0) (z/l)^{3} \text{ for } z \gg l.$$

Fig. 1. Wave Beams Propagated through Random Media

IV. Conclusions

We have already described the effects of the r^2 term in D(r,z)[3] and may easily obtain the properties of $M_{22}^{(1)}(r_1,z)$ in the general case: $D(r,z) = \sum_{n=0}^{\infty} b_{2n}(z)r^{2(n+1)}$. When these are added to a new result of the present analysis, the following conclusions can be drawn.

(1) If $g(z) \ll 1$, the irradiance variance of a plane wave is negligible, and hence it is considered that random displacement of the arrival positions (spot dancing) only may exist. Here a problem concerning spot dancing has been solved. In $g(z) \approx 10^{-1}$, the small variance of the irradiance occurs even for a plane wave. Then a wave form is appreciately distorted. If $g(z) \approx 1$, a wave is largely deformed, and the irradiance variance should be discussed in the general case. This mention is shown in Fig. 1.

(2) For a plane wave, the correlation of the irradiance depends not on the r^2 and r^4 terms in D(r,z) but on the $r^2(n+1)$, n=2,3,..., terms.

(3) The exact solution derived in III may be used as a criterion for testing the accuracy of the approximate fourth-order moments in a more general case.

References [1]M.Tateiba, Mem.Fac.Eng.Kyushu Univ., 33,129('74). [2]K.Furutsu, J.Opt.Soc.Amer., 62,240('72). [3]M.Tateiba, IEEE Trans., AP-23,493('75).