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Abstract — The fourth-order moment equation is exactly solved for a plane
wave propagated through the random medium with a particular correlation
function. This solution shows precisely the small variance of the irradiance
caused by wave-form distortion, and hence gives the range of simple observa-
tion of spot dancing.

I. Introduction

The so-called moment equation determines the statistical properties of
successively forward-scattered (SFS) waves, and holds[l] under the paraxial
approximation and the condition kI >> 1 where k is the wave number in free
space and 7 a correlation length in the medium. So it is a basic equation on
analysis of wave propagation through random media. But the moment equation
has not been exactly solved except the first— and the second-order moment
and the higher moments([2] in the case that the correlation function B(r,z)
of the refractive index is approximately expressed as i azn(z)r2n where, in
general, B(r,z) = L azp(z)r . The r2 term in B(r,z) only gives rise to such
an idealized spot dancing that each irradiance of SF S waves has the same
form , and the arrival position displaces randomly. Other terms r2n (n#0,1)
yield the random deformation of the irradiance[3].

In the present paper, we solve exactly the fourth-order moment equation
for a plane wave in the case B(r,z) = ; azn(z)rzn, by using well-known
techniques. This solution affords the condition for the aforementioned spot
dancing to be observable, a criterion for examining the accuracy of approxi-
mate solutions in a more general case, and so on.

I. Formulation

Let u(r,z) represent anSFS wave in the medium with the refractive index
n =ng(l + Se(r,z))2 yhere ng is a constant and §e(r,z) a Gaussian random
function satisfying

<8e(r,z)> =0 <8e(ry,2))8e(ry,25)> = B(r -r2,2] - 23)

in which the angular brackets denote the ensemble average. The fourth-order
moment of the SFS wave is defined in a r-plane, z = constant, as

2 2
Mpo($1,82,t),t5,2) = <iglu(si,z)iglu*(ti,z)>
where the asterisk denotes complex conjugate.
Chang}ng the variables s§ and tj into r-j and rj:

I-i = $4-tj r; = (8)-so+t) -15)/2 ry = (s +sp+t)+1t2)/b
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and using D(r,z) defined by
D(xr,z) = 2(B(0,z) - B(r,2)) ,

we can write the fourth-order moment equation as

9 1 1
Gz =~ 1O+ ) Ve + (4

N Lb-‘

rp) Veo,1} Ma2(ry,r-1,2)

o
= - Jo dzy (D) {r-i,2)) + Da(ry,r—i,21))] Map(ri,r-4,2)
in
Mzz(ri,r_i,O) = Mzz(ritr-iyo) . (1)

Here, the operators Vri’ Vr—i represent the two-dimensional gradient, and

Dl (r_i;z) = D(r-laz) + D(r_2,z)

roy+ro2 ry+tr_,
Da(r),r-i,2) = D(r; + —2—,2) + D(r; - _2_,2)
r.)-t., r_;-r_,
- D(r, + ——2—,2) - D(ry - —2-—,2)

in _ 2 2
Mzz(ti’r—i’z) = igluin(si’z) gluin(tioz)

i

where uin(r,z) is a wave function in the non-random (8¢ = 0) medium.

Let us define the Fourier transform and its inverse as
f) = f f(r)exp(-jk-r) dr £(c) = (Zn)-sz(K)exp(jr-K) dk .
Then, taking the Fourier transform of (1) with respect to rj, and putting
vy = oy + z[ (-1 + /2%,

we get

" 1 k2 (2 1
D MaaGepapg + (D 426 ,2) = (- K fodzltol(oi+§((-1)i+lx,+5x2>,z1>

- 1 -
+ nz(JvKl.pi+§<(-1)i“.<1 +3%2)521)1) My,

- “in
Ma2(Kg,0-4,0) = M, (ky,r_4,2) . (2)
The solution of the above equation is written as

y ¥ ooem

Mzz(ki,l’_i,Z) = ): Mzz (Ki:r—ioz)

n=0

g ~in
Mztg) = My, (ky,r_i,2)A(2)

0

~ e z z) Znoy
M, A(z) Io dZIIo dzz'"Jo dzn[(A"1 (zl)Ds(zl)A(zl))(A"1 (z2)Dg(z3)A(z2))
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s (A7 (2)Dg (20)A(2)) ] Myn (kg ,T_y,2) (3)

in which
k2 (%m . z-zp ‘41 1 ,
Ds(zm) = - 4~ . % D2 (39¢y,r-1 = —— ((-D)i+lk) +5¢,),2") (%)
k? ‘m ' 2! " z-2' i+] 1 "
A(zp) = exp[- e . dz ] dz" Dy(r_g - m (-1) x]-fitz),z Y1 . (5

Noting that VK] in Dg operates only My in (2) and that D(r,z), in general,
is expressed as

D(r,z) = :ZnobZn(z)r?‘(nﬂ) bynp(2) = [Vz-Z(nH)D(r’z”r:o/[(2n+2)!! 1% ®
we have
® n+} -
- 2+ 1)yt iz 27 %m y2q
Dg(zp) zngoan(zm)ggl( (n2q M - T2k <2
r-)] -r-2 2-2m .2q 2(n+1-q) '
- 5 - N awy (4"
' ' Z=-2
A(zp) = exp{nZOJo dz'Bap(2') [(roy = =k + 3%,)) "
+ (-, + z-kz'("l - %‘2))2(n+1)] (5"

where
z

k2
an(z) = - TJ bzn(z')dz'
0

IMI. Irradiance Variance of a Plane Wave in a Particular Case

Consider the plane wave propagation: uj,(r,z) = exp(jkz). Then we have
Mip(kg,r q,2) = (2n)"6(K1)6(l<2) .

We are concerned here with the irradiance of the wave and hence put r_; =
t-2=0, In the case

1
D(r,2) = ] bap(z)r ¥V )
n=0
the inverse transform of (3) becomes

z

Zn-1
Ms5> = Idk exp(:]tl°k1)[A(z)I0dzl"'Jo dzn ((A™1 (2, )Dg(z))A(z))) "+

(A7 (z)Dg (zn)A(zn) )8 (k1)) (8)
where A(zy) and Dg(zp) respectively are
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Zn m

2 - 2-2
Dg(zn) = -2 (— kD) 2{Bfzy) + B, (zp) [ ( n xl)z-svgl]}

1 Zm '
A(zm) = exp[ngojo an(z')(%kl)Z(n*.l)dz'] .

The application of
J£1 ()V2E5 (RIS (K)dR = £5(0) [V2£) (k) ]yap
to (8) leads to the fourth-order moment:

Mpa(ry,2) = [ M50 (cp,2)
n=0

© 2 Zn-1 z 2n
= z [ dzl---I dzn{[-12(z-zl)2f bz(z{)dz{]°°°[-12(z=-zn)zf bz(zﬁ)dz&]}
n=0/0 0 0 0

4
= exp[g(z)) g(z) = -4Jo(z-2')3b2(z')dz' . 9

Then, the irradiance variance 62 is given by
o2 = exp[g(z)] - 1.

For example, if
D(r,z) = 2B(0,0) [1 - exp(-(r/1)2)]lexp(-(2/1)2)
we have
by (2) = -2~4B(0,0)exp(~(2/1)2).
Hence

gl(z) 1072

giz) =10~}

(]

Z
g(z) 41“'8(0,0)J (z-2")3exp(-(z'/1)2)dz"
0

g(z) =1

14

2/7 B(0,0)(2/2)3 for z »1.

Fig. 1. Wave Beams Propagated

through Random Media
IV. Conclusions

We have already described the effects of the r2 term in D(r,z)[3] and may
easily obtain the properties of Mg’(rl,z) in the general case: D{(r,z) = L
bzn(z)rz(n+l). When these are added to a new result of the present analysis,
the following conclusions can be drawn.

(1) If g(z) «1, the irradiance variance of a plane wave is negligible, and
hence it is considered that random displacement of the arrival positions
(spot dancing) only may exist. Here a problem concerning spot dancing has
been solved. In g(z) = 10”1, the small variance of the irradiance occurs even
for a plane wave. Then a wave form is appreciately distorted. If g(z) =1,

a wave 1is largely deformed, and the irradiance variance should be discussed
in the general case. This mention is shown in Fig. 1.

(2) For a plane wave, the correlation of the irradiance depends not on the
r2 and r% terms in D(r,z) but on the r2(ntl)  p=2,3,..., terms.

(3) The exact solution derived in II may be used as a criterion for testing
the accuracy of the approximate fourth-order moments in a more general case.
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