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Abstract: The theoretical relations among Rayleigh, normal and dB-normal
distributions are investigated, and is introduced a condition which leads
short term median values of Rayleigh fading to dB-normal distribution. From
the relation between Rayleigh and dB-normal distributions, the limitations of
fading reduction by space or frequency diversity are induced, which are 1.8,
6.7, 13.0, 19.8 and 27.]1 dB at cumulative distribution values of 10, 1, 0.1,
0.01 and 0.001 7%, respectively. These numerical values will be valid for the
diversity system, which keeps the medlan value constant, and which reduces
Rayleigh fading by averaging the received singals of independent levels with
respect to the space or frequency. The calculated values are compared with
experimental values of a frequency-hopping multilevel FSK system.

I. Introduction: It is well known that a multipath effect of radio wave
propagation causes Rayleigh fading, and that the short term median value of
Rayleigh fading has dB-normal distribution. The reason for the Rayleigh
fading is already explained mathematically{!’ but the dB-normal distribution
is not explained yet. Nor is explained either the relation between distribu-
tions of a sea wave, whose instantaneous amplitude and wave height have
Rayleigh and dB-normal distributions, respectively. An example of propaga-
tion circumstances is introduced to induce dB-normal distribution from
Rayleigh fading. The theoretical 1limit to the reduction of Rayleigh fading
by space or frequency diversity is induced, considering the relations between
Rayleigh and dB-normal distributions, and between time and space averages on
the ergodic hypothesis. The result is compared with that of the experiment(?)
which used a frequency-hopping spread spectrum technique to reduce fading,
taking advantage of the frequency diversity effect.

2. Outline of Rayleigh, Normal and dB-normal Distributions: When a probabi-
lity density function p(z) which is defined by n-dimensional variable z
within the range of -®{z{00, and continuous and smooth, has only one extreme
value which is maximum at the mean value m, and p(z-m)=p(m-z), then p(z) is
proven to be a normal probability density function expressed as follows:
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A radio wave, which is composed of the amplitude and phase, is expressed
by the point on the Gauss plane. Many radio waves with random amplitudes and
phases can be considered to compose one wave, and the corresponding point on
the Gauss plane will have two-dimensional normal distribution with the same
standard deviation, because there is in general no reason why the above-
mentioned necessary and sufficient condition of normal distribution is not
satisfied, and why the two standard deviations come to be different. Then,
we can get the relation as follows:
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The above formulae show that the two-dimensional normal distribution

averaged with respect to the phase comes to be Rayleigh distribution.

Making

the gradients of Rayleigh, normal and dB-normal cumulative distributions at

50 7% values equal, and using the median value of Rayleigh distribution as the
measuring unit of arguments, we can express Rayleigh, normal and dB-normal
distributions by the following formulae, where p and P represent the
probability density function and cumulative distribution function, and the
subscript R, n and d represent the values of Rayleigh, normal and dB-normal
distributions, respectively. These are drawn in dB scales in Figs.l and 2.
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Fig.l Density Functions
of Rayleigh, Normal and
DB-Normal Distributions,

Which Correspond to Fig.2.

Fig.2 Cumulative Distribu-—
tions of Rayleigh, Normal
and DB-Normal Density Func-
tions, Whose Grandients at

50 Z are Equal.

In Both Figs., Unit of
Abscissa is Median Value of

Rayleigh Distribution.
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3. Relation Between Rayleigh and dB-Normal Distributions: As mentioned in the
previous chapter, the short term median values of Rayleigh fading have
dB-normal distribution, but it is impossible to induce mathematically
dB-normal distribution from Rayleigh fading by taking its short term average,
because Rayleigh fading has no restriction to be dB-normal on the short term
distribution. The reason why the short term average has dB-normal
distribution should be found in the phencmena which affect the propagation
and which make the mean value change. In the following, an explanation is
shown by knife edge diffraction and atmospheric refraction.

The diffraction loss L in dB is, onzusual propagation path, proportional
to the positive diffraction angle T. Namely,

LdE e< T where 7 > 0 n

The above relation will be effective enough to explain dB-normal
distribution in a mobile communication service system, because the
diffraction angles can be considered to distribute normally in the Rayleigh
fading region.

The atmospheric refraction ATshown in Fig.3 1is expressed as follows:
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where 0 : elevation angle on the path

ny: refractive index at the receiving point.

On the assumption that initial value of @ is zero where the initial
value of refractive index n is unity, Eq.(8) is easily integrated, because
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The refractive index of the atmosphere is usually expressed as follows:
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where p;: pressure in mb, p,: vapour pressure in mb, tp! temperature in °C

The partial derivatives of (9) with respective to p;, pe and te show
that Ny distributes in the same way as p;, Pe and tg. The short term mean
values of p;, po and te are meteorologically proven to distribute normally.
Then, Eqs. (7) - (9) show that a fixed communication service system has dB-
normal distribution of the short term mean level variation caused by
atmospheric variation in the Rayleigh fading region.

4, Theoretical Limitation of Fading Reduction by Space or Frequency Diversity

1n the previous chapters, it is explained that the multipath effect
causes Rayleigh fading, and the short term average has dB-normal
distribution. Namely, two-dimensional normal distribution averaged with
respect to the phase comes to be Rayleigh distribution, and the Rayleigh
fading averaged with respect to a term which is relatively short but longer
than the fading period comes to be dB-normal distribution. The ergodic
hypothesis mentions that the time average is statistically equal to the space
average, and this hypothesis is considered to be vzlid for almost all
physical phenomena. Applying the ergodic hypothesis to the Rayleigh fading,
the Rayleigh fading averaged with respect to time is equal to the fading
averaged with respect to space. Namelv the space diversity, which averages
many signals of independent Rayleigh fading along different propagation
paths, produces the signal of dB-normal distribution.

In a radio wave link which adopts a frequency hopping spread spectrum
technique to reduce the fading, the mean signal level is obtained by
averaging the spreaded spectrum in which individual fading is considered to
be independent. In this case, averaging frequencies means averaging the
fading effects on the propagation path, because the different frequencies
with independent fading is considered to be the different frequencies with
different propagation paths of the independent fading effects. So it can be
considered that the received signal averaged with respect to frequencies is
equal to the signal averaged with respect to the propagation space. The
space diversity is explained above to cause dB-normal distribution by the
ergodic hypothesis. Then, the frequency diversity will become equal to the
space diversity, which reduces Rayleigh fading to dB-normal distribution.

By the above-mentioned discussion, Egqs. (5) and (6) lead to the fact that the
space or frequency diversity reduces Rayleigh fading at its maximum by 1.8,

6.7, 13.0, 19.8 and 27.1 dB at cumulative values of 10, 1, 0.1 0.01 and 0.001

%, respectively (the values of 10 %Z and | % are shown in Fig.2).

An example of fading reduction using a frequency-hopping multilevel FSK
technique‘?) shows that the spreading spectrum gains the same effect as
expected by inereasing the signal level by about 9, 15, and 21 dB at bit
error rates of 107%, 10”2 and 10°%, respectively.

5. Conclusion: The reduction of Rayleigh fading is theoretically considered
to know the upper limit of the reduction by space or frequency diversity, and
the reduction is calculated using the relation between Rayleigh and dB-normal
distributions. The calculated values agree with the experimental data within
the range of errors caused on the assumption that the bit error rate is
nearly proportional to the cumulative distribution rate.
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