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Introduction

In solving the field diffracted by an
aperture on a screen or the radiation
field from an open-end of waveguide,
some field-matching technique will be
employed at the aperture or the open-
end; the field functions defined in
both sides must be continued to one
another., The most common techniques
for field-matching are the variation-
al methods, the point-matching method,
and the methods of integral equations.
When the aperture structures are com-
plicated, one will remark the fact
that muech analytical or computational
effort is required, and furthermore
will notice that the cause of the di-
fficulty is complication of the field
functions with real variables x,y.

Vekua.1 has shown a new field descrip-
tion where the field u(z,z) (zex+iy,
zzx~iy) is related to a regular func-
tion & of z as follows:

u = LL&E (1)

where ¥{_is an operator. Henrici2 also
has discussed about }} and has conclu~
ded that § is uniquely determined by

)= JU v = u(z,0)-4u(0,0) (2)

The EE is often observed to be simpler
than u.

In this paper, instead of u, the reg-
ular function is manipulated to
reduce our computational effort. The
field-matching is therefore achieved
by regular-function-matching.

An example will be presented at the
lecture.

Regular—function—-matching
We imagine in Fig.l that a guided wa-

Fig.l. Construction of regions
for field-matching.

ve in the region R, is radiated in

1
the horn region RZ' Both do not over-

lap except at P and Q. The reference
points of Rl and R2 on a complex plane

are z, and 2y respectively. The guid-
ed wave u, and the radiation field u

1 2
are written as modal expansions:

"= z a'ln\'}/ln ' u2=2 8'2n4/2n (3)

The vy and u,
regular functions &1 and éz through
the op»e::'a.‘l:o::'sH__1 andlﬂe— which are de-

fined at the points zy and Zy) respect-

can be related to the

ively. The corresponding regular func-
tions of]Pln and ¥§n can be obtained

by inversion.

: +1n(z)= V/ln(z 12y)-% I'Lln(zl’zl)

¢2n(z)= Ik?n(z'ZZ)—%l'bZn(ZZ';Z) ( )
4
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Then

él:; zalncfln' é2= Za2!14> 2n (5)

Of course, §1 and§2 are restricted in
Rl and 32, respectively.
Suppose thataég is analytic continua-

tion oféﬁe. in Ry,
inuation of u, can then be expressed,

in Ry, by

. The analytic cont-

= {83 (6)

The u; is also expressible in the oth-
er form:

Pad
u= W8, )

~J
where ;iz is regular in R,, and is
given by W%

= Ap -1 ¢
&, (2= ] .25 (8)

The u® must coincide with u, in the

2 1
neighborhood of Zye The matter can not
be altered by inversion of‘{i. Thus,

the field-matching can be replaced by
the regular-function-matching such
that

N
B(2)= B () stz (9

Actually, (9) is established by
b1n= b2n (10)

where

& (2)= Db, (z-2))"
%(z) = D bp,(2-2,)

and b, , of course, contain
2n

(11)

The bln

the unknown coefficients %1n and a

2n’

respectively. The number of equations

of (10) should be chosen as the number
of the unknown coefficients.
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Provided that both the regions overlap
partly, we may take the same reference
point 2y at the common region. The giz

can then be substituted forég. Thus,

@ ()= B,(2) atz,  (12)

* %%
The g;; is given, at Z09 by inverting
the Vekua's description. The result is

&,(2)= -&,(2) + (=)

2
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2

. § g(t)dt + ég(zl)

$322 5 (e feme) ) )

z2 t

.3 g(t)dE

where the bar denotes the complex
conjugate, and

o . .
2= & 2<z )
}t J (2’(z1—22)(z -t) )
. & S(t)at
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