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1. Introduction

The reconstruction problem of perfectly conducting bodies from far-field
data has been discussed, in the context of physical optics, by Lewis[1]
and Bojarski[2]. But these works are restricted to use backscattering data
or monostatic data . S.Ronsenbaum-Raz[3] extended the theory to the
bistatic case. Though, he also refer to single frequency measurements, his
work 1is a formal one because it violates the monostatic-bistatic
equivalence principle, and some of the quantities necessary for
reconstruction are not measurable. In this paper we will show a Identity
using the single frequency, multistatic data. Some numerical experiment
results will be presented.
Z., THhe ciectromagnetic physical GpiTics
direct scattering approximation

By the Stratton-Chu direct integration of the vector electromagnetic

wave equation, the magnetic fields scattered by closed surface of a
scatterer is

Hs=$ { (nXH) XVG+ (n-H)VG—jwe (nxXE) G} dS. (1)

Here, the integral is over the entire surface S of the target, n denotes
the unit vector normal to the surface S, and G is the Green's function.
For the perfect conductor, the surface boundary condition are

nxXxE=0 n-H=0, (2)

and we assume that the scattering processes are adequately describable by
the theory of physical optics. Appropriate expression for the far
scattered field due to an incident field Hi is

Hs= 2j 4G {Hi (ks*n) —n (ks-Hi) } dS. (3)
Kie-n<oO

Here, the surface integral in (3) is over the illuminated portion of the
target surface, Ks is the wavevector characterizing the scattered wave.
From (3), Bojarski and Lewis led the far-field scattering amplitude on
condition that the incident field in the vicinity of the scatterer is a
plane wave, and that the scattering data is restricted to the
backscattering data or monostatic data. In this paper, we remove the
second condition, or use multistatic data.

We consider an incident field is a plane, time-harmonic wave of the form

Hi=1 (ki) exp (jki-x" ) ni, (4)

where Ki is the wavevector characterizing incident radiation, I(Ki) is the
complex amplitude and hi is the unit vector representing the incident wave
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polarization. And we assume the scattered field is the far field or
spherical wave. The substitution of (4) into (3) yields

exp (jks-*x)
Es=p (ks, ki) I (ki)

(5)
vyiar X
where

p (ks, ki)
= § A mf e ierky o hy (ks a—n (ks-hR1)} d3 (6)

Note that, in this case, the normalized complex scattering amplitude
p (ks,ki) is a vector.

3. Inverse scattering

For the negative argument of
viewing direction, (6) yields

identity

(6), i.e., geometrically opposite

p (— ks, — ki)

— J AV §edeaklyox (n] (ks n) —n (ke- hi) } ds.
Ki-n>0 (T]
From (6) and (7), it follows that

p (ks, ki) +p* (- ks,

— ki)

P ATE § e dskex (g (ks>*n) —m (ks-hl) ]} ds.
= (8)

Here the asterisk denotes complex conjugate,

and the integral is over the
entire surface S of the target. To apply the divergence theorem to (8),

decompose (8) into three components( hi,ki, and ei component).
First, as for hi component of (8) is
hi- {(p (ks, ki) + p* (— ks, — ki) }
=j/Va$e ke kDx (ks—hi(ks-hi)} -ds

(9)
By the divergence theorem, (9) reduce to
Jehi: {(p (ks, k1) +p* (— ks, - ki) }
o= j‘ e—J(ks-—kl)'xdv
(ks— ki) + {ks— hi (ks - hi) } e (10)
Following bojarski[l], we define the characteristic function of the
scatterer as
y (x) = {' 1 XeV (11)
0 X g V.

And we define the left hand side of (10) as I'l ( B)

. Then (10) reduce to
LAY =F g (x) e~ "qdp, (12)

where B =ks— ki. It shows that 'l ( 8) , which is discribed in term of
p (ks, ki) , is the Fourier transform of the characteristic function

v (x) . Thus, by the three-dimensional spatial inverse Fourier transform
of (12),
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L==]

7 (x) = (2z2) 9fTr1(B) el®=>dx. (13)

-0

From other component of (8), ie., ki,ei component, we can obtain similar
relation.

In order to recover 7 (x) from (13), we must know the value of
I'l (B) in the whole B space. Bojarski and Lewis recovered the B space
by means of the knowledge of the backscattered field for all frequencies
at all aspects of the target . By their procedure, the low frequency
scattering informations are included even though in that range the
physical optics approximation is not valid. The reason why the good result
obtained is due to the fact that the physical optics inverse scattering
identity (13) is heavily weighted by the reciprocal of the square of the
frequency in favor of the low frequency. But if the target shape is more
complicated, the range that the physical optics approximation is not valid
become more wide. Such effect may not arise in this case, and good results
may not be obtained by Bojarski's method.

Now, we present a way to

recover B space from a ARz

single frequency scattering A
data. When a harrmonic plane - ks____{_'/

is transmitted at all aspects
and the scattered field is /  \ ...

obtained at all aspects, we s k'i\ """" Eas]
can recover the B space ' >
within range of a sphere with By

radius 2k(see fig.1l). Though
the obtainable information is
limited, this two things can
be pointed out. i
1) If the wavenumber of the
transmitted wave 1is ~ enough
large, all of the obtained Fig.l. Volume of integration obtained from

information hold the physical single frequency k, multistatic data.
optics approximation. '

2) The main contribution to the Fourier integral comes from the low
frequency information of T1 (B8) .

Then we can obtain 7 ( x) by means of the limited band information of

L1 CB) -

2k

3. Numerical expariment reswlts.

Some numerical results are presented here in case of two dimensional
scatterer or the perfectly conducting elliptic cylinder. The scattered
fields are calculated by the equivalent source method. In the presentation
of the results the following notation are used: major axis of elliptic =
a, minor axis = b, incident wavenumber = k.

Fig.2 showns the v (x) of a elliptic cylinder of a=1.0, b=0.5 with
k=10.0 constructed according to (13). In this case, The result can be
considered as very satisfactry. But when the same wavenumber k=10.0 is
transmitted to the a=1.0, b=0.2 elliptic cylinder, we couldn't obtain a
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recognizable reconstruction(fig.3). This may be come from the physical
optics approximation is not valid for this complicated shape with K=10.0.
But if we choose larger k, the physical optics approximation become valid.
Fig.4 shows 7 ( x) of the same elliptic cylinder as fig.3 with k=30. In
this case, as expected, a reasonable reconstruction is obtained.

Fig.l. characteristic functlon of reconstructed
a=1.0, b=0.5 elllptic cylinder with k=10.0.

W Fig.2. characteristic functlon of reconstructed
‘F__“F_hhH_"“*hH“"“~—~‘_,,-f”"’~"‘q~"—_‘_——H 2=1.0, b=0.2 elliptic cylinder with k=10.0.

Fig.3. characteristic functlon of reconstructed
a=1.0, b=0.2 elliptlc cylinder with k=30.0.

4, conclusion

We have extended the Bojarski's physical optics scattering identity for
single frequency measurements case. And numerical experiments. have
confirmed the validity of this method.
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