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I. Introduction

In radar imaging system or optical holography, the scattering object under coherent
illumination is usually modeled as a complex spatial function to represent the object
surface reflectivity. Its magnitude is proportional to the reflected energy from the object,
whereas the phase is related to the electrical and geometrical properties of the object
surface. It was known that the object scattered far fleld is the two—dimensional Fourier
transformation of the object reflectivity. Therefore image of the scattering object (defined
as the magnitude value of the object reflectivity) can be reconstructed from the recorded
Fourier data through a two—dimensional Fourier inversion then taking the absolute value
of the result.

In a practical coherent imaging system, one can only gather frequency—offset
Fourier data of the scattering object due to the limitation of bandwidth and viewing angle
used [1,2]. The reconstructed image then becomes distorted. However, unlike ﬁxe
noncoherent imaging system such as the X—ray tomography, the reconstructed image from
these incomplete Fourier data is shown with good quality, for example, the reconstructed
terrain map in spotlight synthetic aperture radar system. This is mainly due to the
“randomness" of the scattering object phase value caused by the "roughness'" of the object
surface. The Fourier information of the scattering object then "uniformly" distributed over
the entire Fourier space rather than concentrated to the origin of the Fourier space as in
the case of a noncoherent imaging system. Therefore 'good quality" image can be
reconstructed from a finite area of %requencj;—oﬂset Fourier data in a coherent imaging
system,

Fractal geometry, introduced by Mendelbrot [3]. has been used in computer graphics
to model surfaces or scenes that closely resemble the natural objects such as mountains,
coasts and fields. In this paper we will present studies of the effect of the surface
"roughness' to the reconstructed image quality by using fractal geometry with different
fractal dimension to simulate the phase value of the scattering object. Discussion of the
approach to reduce the speckle noise encountered in the reconstructed image is also given.

II. Computer Simulaticn

In this section, numerical simulation of image reconstruction trom frequency—otfset
Fourier data is described.

The scattering object reflectivity is denoted as
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where A(x,y) and & x,y) are the magnitude and phase. Its Fourier data are recorded in
polar format as

F(f. 6) = ff Al x’y)ejgD{x.y}e—jﬁx‘f[xcosf)+ysin9_)r1xd}, (2

in which #is the observation angle and radial distance { represents the frequency used.

In this study, only an annular portion of Fourier data is available (ie., fij<f<{s as
shown in Fig.1) for image reconstruction. The object phase ¢(x,y) is calculated by

olx,y) = ¢x)d(y) (:
where ¢{x) and & v) are the bandlimited Weierstrass function given as [3)]
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where 7 is a constant determined from the variance of 4, b is a positive real number
representing the fundamental tone, D is the fractal dimension (1<D<2), ¢ is a random
phase term, and N=N»—N+1 is the number of tones used.

It was known that the bandlimited Weierstrass function ¢(x) can be represented as
a physical fractal since it possesses a very large derivative and is self similar over scale
lengths ranging from 1/b¥ to 1/b*2. Figures 2(a) and (b) are plots of é(x) with fractal
dimension D=1.01 and D=1.99, and 40 tones are used for calculation. The simulated objet
phase is shown smooth as D=1.01, and is close to "randomness' as D=1.99.

The object magnitude A(x,y) used in the simulation is a 9x9 square with unity in a
64x64 frame as shown in Fig.3. Two different fractal phases #(x,y) calculated from
Wierstrass function given in eq.(4) with fractal dimension D=1.01 and D=1.99 are used to
simulate the scattering object. Frequency—offset Fourier data are then calculated according
to eq.(2) for 100 views over 360¢ and 11<{<32. According to the slice—projection thecrem
[4], each radial line data in the Fourier space gives a projection image of the object,
therefore the reconstructed image can be calculated using the backprojection algorithm [4]
instead of two—dimensional Fourier inversion. However one should note the projection
images obtained in this study are complex valued data due to the original complex object
reflectivity. Therefore the summation operation of those projection images used iu the
backprojection procedure is a coherent superposition (containing real and imaginary values)
instead of nonccherent superposition (containing only l‘eaﬁ values) used in X-ray
tomography.

Figures 4(b) and (c) are results of the reconstructed images of the simulated objects
with fractal phase o(x.y) using D=1.01 and 1.99. As comparing with the reconstructed
image of a real valued object given in Fig.4(a), image shown in Fig.4(c) gives the closest
resemblance to the original object image. Due to only the frequency—offset Fourier data
available, image given in Fig.4(a) shows only the edge information of the scattering object.
As fractal dimension becomes larger, the phase d(x,y) becomes more 'random' and seems
to translate the illuminated energy to the entire Fourier space. Therefore "good quality"
image can be reconstructed from frequency—offset Fourier data as the fractal dimension of
the scattering object is large.

—358—




The reconstructed image shown in Fig.4(b) contains speckle noise arising from the
random version of the destructive and constructive interference caused by fractal phase.
Figure 4(d) is the result obtained by using the noncoherent superposition of backprojected
images to reduce the effect of speckle noise by averaging, but the image background
becomes more emergent and some 1mage detail may be lost. Further development to reduce
the speckle noise is under study.
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Fig.1 Polar format of the recorded frequency—offset Fourier data.

(a) (b)
Fig.2 Plots of fractal phase with (a) D=1.01 and (b) D=1.99.
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Fig.3 Original object image (only magnitude shown).

uﬁbw-_::"‘__"‘—-.\.
"“—--‘-h"‘"‘-——_____‘_“-_
= 1=
=&
= NS
%} \e-’ =
A N
=———2 ”'\@‘%
—_————— =
=
-_‘--—M-.u.‘___ —

Fig.4 Reconstructed images of (a) real—valued object (b) complex—valued object with
fractal phase with D=1.01 (c) complex—valued object with fractal phase with D=1.99 using
coherent backprojection algorithm and (d) complex—valued object with fractal phase with
D=1.99 using noncoherent backprojection algorithm.
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