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1.  INTRODUCTION AND BACKGROUND

Scattering polarimetry based on the Mueller or coherency matrix is sensitive to the shape, orientation
and dielectric constant variations inside a volume [1]. However, it is insensitive to the spatial
distribution of scatterers and so polarimetry alone is unable to extract full information about volume
scattering. Such a situation arises in radar remote sensing of the Earth’s land surfaces, where
vegetation cover generates anisotropic volume scattering. Hence in order to determine the physical
structure of vegetation a new type of sensor is required.

Radar Interferometry is sensitive to the position of a scattering element through the phase
difference between signals at either end of a baseline [2]. Also of importance is the interferometric
coherence, a measure of the local fluctuations in phase based on the correlation between the two
signals. This coherence is related to the spatial extent of the scatterer [3].

Polarimetric Interferometry [4] coherently combines these techniques to provide a new type of
sensor that is sensitive both to the vertical distribution and anisotropy of the scattering elements. In
Polarimetric Interferometry, two measurement positions 1 and 2 are separated by an effective normal
baseline Bn. Radar measurements of the 2 x 2 coherent scattering matrix [S] are made for wavelength
λ at each position in the range/cross range co-ordinate system. By transforming the data into the
surface co-ordinates and overlapping the data in the spectral domain (through a process called range
filtering [1]) the sensor can be used to locate the z co-ordinate of a scattering point.  To study
decorrelation in the 'z' direction, we then define an effective propagation constant from the range R
and angle of incidence θo as
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If there is a vertical distribution of scattering elements (a forest volume for example) then the resultant
radar return is a coherent average over the volume. The polarimetric and interferometric information is
then contained in a 6 x 6 hermitian matrix [P] defined from an average of the outer product of
scattering vectors k1 and k2 as
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In polarimetric interferometry the interferometric correlation is generalised to account for arbitrary
choice of scattering mechanisms w1 and w2 at either end of the baseline [1,4]. In terms of the three
sub matrices of [P] defined in equation 2, it can be written as
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Our objective is to relate the ampli tude and phase of this complex scalar to physical parameters of the
scattering volume in the scene. To do this we use a coherence optimisation procedure [4,5]. The
maximum values of coherence γ are given as the square root of the eigenvalues of a matrix [K] defined
as
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This paper concerns a study of the physical interpretation of the matrix [K] for the special case of
volume scattering by a cloud of partially oriented scatterers. We show that by using this optimiser as a
pre-processing step, significant simplifications accrue for data inversion and hence for quantitative
studies in microwave remote sensing.

2. ORIENTED VOLUME SCATTERING

In many vegetation problems the scatterers in a volume may have some residual orientation correlation
due to the natural structure (branches in a tree canopy for example) or due to agriculture (oriented corn
stalks for example). The propagation of radar signals through such a volume can no longer be assumed
to be scalar. In this case the volume has two eigenpolarisations a and b (which wil l generally be
orthogonal). Only along these eigenpolarisations is the propagation simple, in this sense that the
polarisation state does not change with depth into the volume. If there is some mismatch between the
radar co-ordinates and the medium’s eigenstates then a very complicated situation arises where the
polarisation of the incident field changes as a function of distance into the volume. In this paper we
show how the optimiser of equation 4 always obtains a matched solution and hence is useful in the
application of inversion schemes for oriented volume scattering problems.

By assuming that the medium has reflection symmetry about the (unknown) axis of its
eigenpolarisations, then we obtain a polarimetric coherency matrix [T] and covariance matrix [C] for
backscatter from the volume as shown in equation 5 [1]
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We can now obtain an expression for the matrices [T11] and [Ω12] for an oriented volume extending
from z = z0 to z = z0 + hv  as vector volume integrals as shown in equations 6 and 7
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where for clarity we have dropped the brackets around matrices inside the integrals and defined
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where σ are the extinction coefficients of the volume and  χ the refractivities (index of refraction – 1).
Note that if we cannot align the radar co-ordinates with the volume then the matrix term R(2β), which
multiplies the whole matrix integral expression inside the brackets, causes a coherent mixing of terms
which is very difficult to interpret. We will show that the polarimetric optimiser automatically aligns
the radar to the oriented volume. This result follows from knowledge of the explicit form of the matrix
K, which for this problem enables direct calculation of its eigenvalues and eigenvectors and hence
optimisation parameters in closed form.

3. OPTIMUM COHERENCE VALUES FOR ORIENTED VOLUME SCATTERING

To account for the effects of propagation on the polarimetric response of an oriented volume it is
simpler to employ the covariance matrix [C] rather than the coherency matrix [T]. For a general
oriented volume we then have
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where f c c c c I I= −( )*
11 33 13 13 1 4  and similarly  for the polarimetric interferometry we can write
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Note that Ω12 is neither symmetric nor Hermitian. The integrals I1 – I9 are defined as
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and kz is defined in equation 1, ka, kb are the complex propagation constants of the eigenstates. Hence
the first part of the matrix [K] (equation 4)  has the form

( )
C

e

f

c I c I
f

c I
c I c I

c I c I
c I

c I c I

i zo

11
1

12

33 4 13 2

22 3

13 2 11 1

11 5 13 6

22 7

13 8 33 9

0

0 0

0

0
0 0

0

− =

−

−

































Ω
φ

* *
*

                                        -  13)

which is diagonal if I4I6 - I2I9 = I8I1 – I2*I5 = 0. From equation 13 we can easily show that both
equations are satisfied for arbitrary medium parameters as we have
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Hence the product 
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 is diagonal. We can also find the complex diagonal values as
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 is also diagonal and hence by using the
relationship between [T] and [C] we can show from equation 6  that the eigenvectors of
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We see that the eigenvectors of [K] tell us about the orientation of the medium eigenpolarisations and
the eigenvalues are the coherences for the corresponding wave extinctions. As expected from physical
arguments, the highest (lowest) coherence is obtained for the polarisation with the highest (lowest)
extinction. This is the physical basis for the successful operation of the optimiser.

In the oral presentation, L-Band Radar data from the DLR E-SAR sensor wil l be used to
illustrate the application of this algorithm to forested and agricultural terrain.

4. CONCLUSIONS

In this paper we have shown that the coherence optimiser algorithm provides a full solution to the
oriented volume scattering problem in that the optimiser automatically corrects for any misalignment
between the radar and volume co-ordinates. As a bonus, the optimum values of coherence then relate
directly to the depth and extinction coefficient of the volume. This result provides the basis for an
algorithm for the remote sensing of oriented vegetation structure using polarimetric interferometry and
has applications in agriculture and low frequency forest remote sensing problems.
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