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Abstract:

This paper describes an innovative approach for the simulation of the microstrip patch antennas
with fractal boundary. First, L-System based fractal generator with the possibility of exporting
the desired geometry into various EM simulators has been developed. Before the full-wave sim-
ulation is performed, modal analysis to predict the resonant frequencies, field distribution and
radiation pattern is employed.

Introduction

Full wave simulation of complex structures presented by fractal microstrip patch antennas is
very difficult and time-consuming indeed. Cavity model has been found to be very useful and
fast in obtaining basic parameters of such structures like resonant frequencies, field distribution
and radiation pattern. Based on derived results, modes with remarkable field distribution re-
garding mainly the radiation pattern can be determined. This approach saves considerable time
when finally full-wave simulation is performed. Moreover, comparison with full-wave simulation
and also measurement gives reliable agreement. In addition, powerful and widely configurable
L-System based fractal generator was used to create structures for EM simulators.

L-System based fractal generator

L-System (Lindenmayer System) is a recursive, text substitution scheme, followed by geometric
interpretation. It has been found very useful for generating various fractal structures for EM
purposes where the main advantage is its effectiveness and wide variability covering most of
deterministic fractal structures. Matlab has been used for both implementing L-systems al-
gorithm in 2D plane and creating appropriate files for widely used EM simulators like IE3D,
CST-Microwave Studio and FEMLAB.
A simple L-System starts with a seed, let’s say the letter F, and has one rule to replace the
existing seed. A simple replacement rule might be for example: F-F++F-F (see explanation
below). This rule would be applied according to iteration level to produce a series of strings of
increasing complexity. To produce fractals, strings generated by L-Systems must contain the
necessary information about figure geometry. A graphic interpretation of strings is based on
assigning the language to the motion of the imaginary turtle.
L-system language
Let us now describe specific language used in our simple L-System Matlab script.

F move forward a step of length f

+ turn left by a specified angle θ

- turn right by a specified angle θ

Beyond to the above, there is also more letters defined. We will not discuss it here since they
are not very important when considering planar antennas with fractal boundary only. Useful
feature of the described generator is the possibility to control the area of designed shapes over
all the iterations.
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Examples of L-System language
Let’s now see some examples of creating planar fractal antennas to show the simplicity and
variability of the proposed generator:
Koch Snowflake: seed F+F+F, rule F-F++F-F, θ=60◦

Quadratic Koch Island (QKA): seed F+F+F+F, rule F-F+F+FFF-F-F+F, θ=90◦, see Fig.1
Koch Coastline (KC): seed: F+F+F+F, rule FFFF+F+F-F-FF-FF+F, θ=90◦, see Fig.1

Simulation of fractal plannar antennas

Simulation methods based on MoM or FDTD are in general very time consuming even when
considering such complex structures as presented by fractal antennas. We have successfully used
so-called modal analysis (represented by cavity model here) to predict the antenna’s behaviour.
Cavity model
Cavity model [1] reduces microstrip planar antenna to planar resonator with perfect magnetic
conductor at its boundary. Having an antenna lying in XY plane for example, we consider only
Ez component under the patch and no fringing fields. Using this simplification, Helmholz wave
equation with Neumann boundary condition have the following form

(∆ + k2
d)Ez(x, y) = 0,

∂Ez(x, y)
∂n

= 0 . (1)

For sets with fractal boundary, the solution haven’t been found in closed form yet so we turned
to use finite element method implemented in Femlab software.
The solution of (1) consists of eigenvalues {k2}n and corresponding eigenfunctions {Ez}n. Eigen-
values are related to resonant frequency

fn =
c0 · kn

2π
√

εr
, c0 = 3 · 108ms−1 (2)

and eigenfunctions are related to modal fields, namely Ez inside the cavity (under the patch).
Fig. 1 shows the spectra (eigenvalues k2

n versus it’s count) of QKA 0-2 and QC 0-2 patch antennas
with constant area 1000mm2 over two iterations. From results, the influence of fractal1 boundary
with given iteration on the resonant frequencies can be seen.
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Fig. 1: The spectra of Quadratic Koch island and Koch square island for iterations 0-2

Although the cavity model is very simple, predicted resonant frequencies are very close to those
obtained by IE3D full-wave simulation. In [2] we have analysed Koch Snoflake (iteration 3),
the results are shown in Tab. 1. Measured frequencies aren’t shown in table as they are very
close to IE3D’s one. As a conclusion, we have found that ”high directivity” mode is even mode
number 13+14 (degenerated) opposite to mode 6 Borja [3].

1We should rather use the word prefractal since the iteration number is finite
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mode nr. fIE3D[GHz] fFEM [GHz] rel. error %
1+2 0.7925 0.8016 1.14
3+4 1.108 1.125 1.5
5 1.218 1.23 0.95
6 1.645 1.6768 1.9
7+8 2.124 2.148 1.11
9 2.406 2.4775 2.88
11 2.448 2.5707 4.77
13+14 2.756 2.8193 2.25
15+16(+17) 2.867 2.9148 1.6
18 3.157 3.1808 0.75
20+21 3.369 3.4145 1.33
23(+22) 3.547 3.5444 0.07

Tab. 1: Resonant frequencies of Koch Snowflake-3 obtained by cavity model and using IE3D

Surface currents
Once knowing electric field distribution Ez under the patch, calculating the surface electric
current J on the desired resonant mode is straightforward [1]

J = n̂×H where H =
1

jωµ0
×∇Ez . (3)

Obtained surface currents are very important for determining the resonant mode comparing
with full-wave simulation results and also for radiation pattern estimation as well. Fig. 2 shows
electric field Ez together with electric current density |J| of QKA-2 at mode 9 calculated by
cavity model and full-wave simulator IE3D. It can be easily seen that the results are quite
similar even if we recall the fact that the cavity model doesn’t account influence of the feeder
and fringing fields into calculation. Modal analysis is thus very important for quick identification
of excited mode(s) when one looks at the results of full-wave simulation and compare current
distributions. Additional care must be taken outside the resonant frequencies indeed. Thanks
to the nature of the problem, an superposition of several modes will occur depending on feeder’s
type and position and could make identification slightly problematic.

Fig. 2: QKA-2: electric field Ez from cavity model (left), electric current density |J|
on mode 9, cavity model (middle) and full wave solution (right)

Radiation pattern
Radiation pattern can be obtained considering magnetic or electric current density respectively.
It has been found out that using electric currents at the patch surface is more comfortable
regarding the algorithm complexity - we don’t need to know the outer normal to the antenna
boundary needed for magnetic current calculation. Once knowing the electric currents densities
Jx and Jy obtained by (3) on the desired mode, we are able to calculate the radiation vector N

- 403 -



Nx(θ, φ) =
∑
x′

i,y
′
i

Jx(x′i, y
′
i) exp

{
jk(x′i sin θ cos φ + y′i sin θ sinφ)

}
∆x′∆y′ (4)

Ny(θ, φ) =
∑
x′

i,y
′
i

Jy(x′i, y
′
i) exp

{
jk(x′i sin θ cos φ + y′i sin θ sinφ)

}
∆x′∆y′ , (5)

where x′i and y′i are the source points where the current density is considered. ∆x′ and ∆y′ are
discretization steps determining the accuracy of radiation pattern calculation. The sumation
in eqs (4) and (5) is performed over all the patch area. See Fig. 3 for an example of the
discretization (4524 cells) used for radiation pattern calculation, Jx and Jy components at mode
9 are shown. Calculated cut φ = 0 is at Fig. 4 with full-wave result for comparison. The effects
of ground plane and dielectric substrate haven’t been included into calculation for simplicity.

Fig. 3: QKA-2 current density Jx and Jy at mode 9 used for radiation pattern calculation

Using radiation vectors (4), (5), far-field pattern is then obtained in spherical coordinates

Fθ(θ, φ) = (Nx sinφ−Ny cos φ) (6)

Fφ(θ, φ) = (Nx cos θ cos φ + Ny cos θ sinφ) . (7)

Fig. 4: Farfield pattern at mode 9, φ = 0, obtained by full-wave and quasistatic simulation

Conclusions

We presented very general and widely configurable generator of fractal antennas based on L-
Systems. This generator has been used here for creating selected microstrip patch antennas
with fractal boundary which have been studied using cavity model. The results shows that
fast modal analysis gives reliable estimation of basic antenna parameters and finally reduces
time needed for full-wave analysis. In addition, knowledge of the spectra of fractal resonators
is valuable for studying exciting problems like electromagnetic chaos and some quantum theory
opened problems.
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