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1.  Introduction 

For solving the remote sensing problems, it is important to know the polarization patterns of 
radio waves reflected from underlying surfaces. Information is extracted from the elements of the 
scattering matrix when  illuminating areas on the surface. It is clear that variation in electrical-and-
physical properties (salinity, moisture, soil composition, etc.) of such areas will cause changes in the 
main electrodynamics characteristic of the surface - its complex permittivity ε. Changes in the 
complex permittivity variation result into variation in reflecting characteristics of the underlying 
surface (i.e. characteristics of its elements of the scattering matrix). Basic results are presented for 
different models: exponential and quadratic profile. Attention is paid to vertical probing for 
investigating polynomial, linear, quadratic, matching and intermediate layered profiles. 

 
2.  General relations 
 In Radar Remote Sensing the scanning of underlying surfaces is carried out from above  
(platform on–board aircraft, satellite, stationary tower, etc.) The dimensions of the illuminated area of 
the underlying surface are determined by the height (H) from which scanning is carried out, the 
scanning angle (θ) and the antenna beam width (in two mutually perpendicular planes ∆α and ∆β); see 
Fig. 1. 

The wave radiated by the antenna induces (at the surface D) currents which are the sources of 
a scattered field. In the general case, the energy is scattered omnidirectionally and also in the direction 
of the antenna 

We shall consider a medium which fills the half-space z<0. Electrical and physical properties 
of this medium depend only on the depth inside the medium surface, meaning that the permittivity 
profile ( )zεε = is just a function of  z. 
 The plane electromagnetic wave is incident on the boundary (i.e. medium surface) at the angle 
θ. The electric field vector of this wave is perpendicular to the x-z plane of incidence (i.e. horizontal 
polarization parallel to the y–axis). The total field in the upper half-space consists of the incident and 
reflected waves. The electric field vector of the wave inside this medium wave should meet the 
differential equation: ( ) ( ) ( ) 0,, 2 =+∆ zxEzkzxE ε . After substitution of ( ) ( ) { }θsinexp, ikxzgzxE =  this 
equation will be reduced to the differential equation: 
 

( )[ ] ( ) 0sin 22 =−+′′ zgzkg zz θε .                          (1) 
 

 Using standard conditions of  continuity of tangential components of the vectors 
r
E  and 

r
H , it 

is possible to derive the formula for the reflection coefficient of horizontal polarization (HP): 
( ) ( ) ( )[ ] ( ) ( )[ ]0cos0/0cos0 zzHP gikggikgR ′−′+= θθθ . 

 For a vertical polarization, the magnetic field vector inside the medium may be represented by: 
( ) ( ) ( ) ( )θsinexp, ikxzvznzxH −= , where ( ) ( )zzn ε=  and the function ( )v z  is the solution of the 

differential equation: ( ) ( )[ ] ( )[ ]( ) ( ) 0sin 222 =−+″ zvznznkzzn zz θν . Using similar conditions of  
continuity it is possible to derive the formula for the reflection coefficient: 

( ) ( ) ( )[ ] ( ) ( ) ( )[ ]θεθε cos000/cos000 ikggikggR zzVP −′+′= . 
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3.  Exponential layer 
 The complex permittivity varies according an exponential law: 

( ) { } ( ) { } 0Im;2exp2exp 21 =⋅+=⋅⋅= ααββαβε zizz . In this case we find for the function ( )zg  as 

solution of  equation (1): ( ) ( ) { }




 ⋅⋅= z

k
Hzg αβ

αξ exp2 , where ( )Hξ
2  is the Hankel function of the 

second kind. The order of this function is ξ
α

θ= k
sin .  

 For the reflection coefficient RHP we may derive (after rewriting the derivative of the Hankel 
function):  

( ) ( ) ( ) ( )











+


















−





= +

−
+

− β
α

ββ
α

β
α

ββ
α ξ

θ
ξξ

θ
ξ

k
He

k
iH

k
He

k
iHR ii

HP
2

1
22

1
2 / . 

 
4.  Quadratic layer 

 The complex permittivity in a quadratic layer varies according: ( ) ( )ε α βz z= + 2 . For such a 
medium it is impossible to find the exact solution of (1) with the use of known functions. With small 

α, it may be derived: ( )
( )
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5.  Vertical scanning 
 Vertical scanning is quite often used as technique for  solving the remote-sensing problems 
probing surfaces. In this case there is no difference between vertical and horizontal polarizations and 
the scattering matrix becomes the identity matrix. However, the reflected-wave power depends to a 
great extent on the behavior of dielectric qualities of the investigated surfaces. Let us consider the 
reflection for different analytical permittivity profiles in which the complex permittivity changes with 
depth. 
 
5.1  Polynomial layer 
 The complex permittivity change is described by the relation: ( ) ( )mbazz +=ε . 
 Substitution in equation ( 1) (with θ=0) leads to: 
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This solution satisfies the radiation condition at infinity. 
 
5.2  Linear layer 
 The complex permittivity change is now described by the relation: ( ) bazz +=ε . The 

reflection coefficient becomes: ( ) ( ) ( ) ( )
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 Analysis of this expression with arbitrary complex values a and b is difficult. We therefore 
consider only extreme cases of small and large a and give the relations between R and a for 
several (typical and practical) important cases. 
 With small a (when the complex permittivity modulus slowly varies with depth), we derive: 

( ) ( )



 −++


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boundary is absence (i.e. b=1), we have: 22004,0 λaR = . In this case the reflection is nearly absent. 



 Another extreme is the case in which the complex permittivity increases rapidly with depth, 

i.e. a  is large. In this case we derive: ( )73,11
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for large values of a  the reflection coefficient module is close to 1. With a further increase of a  and 
λ it tends to 1. 
 A similar behavior of R can be found for the polynomial layered model. The dependence of  

R 2  (power reflection coefficient) on the parameter a  for the linear layer is shown in Fig.2. 
 

5.3  Parabolic layer 
 The parabolic layer is described as quadratic layer: ( ) ( ) ( ) ( )[ ]2

2121
2 bbziaabazz +++=+=ε . 

In this case the reflection coefficient is given by the expression: 
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( ) ( )[ ] ( ) ( )[ ]bikwbbikwbR 156,00094,01/156,00094,01 −++++−= . When a sharp boundary is absent 

(b=1) we get: R a= 0 016 2 2, λ . In another extreme case, when |a| λ>>b we may find: 
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5.4  Matching layer 
 In a number of extreme cases a thin intermediate layer is formed at the medium-air boundary. 
In this layer, the complex permittivity smoothly varies from 1 (atmosphere) to its final permittivity 
value after some depth. The presence of such a layer results in a number of cases into a substantial 
decrease of the reflection coefficient due to the decrease in reflections that takes place at the boundary. 
 In order to describe this situation we consider the reflection from the following structure: the 
region z<–h  is filled with a medium with the complex permittivity ε k . The “matching” layer is 
located within –h<z<0. The complex permittivity ε s  of this layer varies according a cosinusoidal law: 

h
zkk

s πεεε cos
2

1
2

1 −++= . This relation shows that when z=0, the complex permittivity ε s = 1and 

when z=-h →  ε εs k=  and ( ) ( )′ = ′ =ε εs s h0 0 . This profile is chosen so that matching (including the 
derivatives)  takes place at the boundaries of the layer. The wave equation for the matching layer is 
simplified by means of the substitution of an independent variable into the Mathieu equation. 
 The results of the calculation of the reflection coefficient with different values of the complex 
permittivity are shown in Fig.3. This figure shows that the reflection coefficient varies from 

( ) ( )1 1
2

− +ε ε/  to zero. Similar curves for a matching layer with a linear dependence (without 

the matching for the derivatives) are shown in the same figure for comparison. The figure shows that a 
decrease in the reflection coefficient for the linear layer is faster than for the matching “cosimusoidal” 
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5.5  Intermediate layer 
 The exponential permittivity profile as given in Section 3, may correspond to an intermediate 
layer. In this case the formulae in  Section 3 remain valid. For a medium with small α the reflection 
becomes: 



 

 ( ) ( )





 −++






 ++−= −−− 2/

0

2/2/

0

2/ 31125,01/31125,01 δδδδ β
ρ

ββ
ρ

β iiii e
i

ee
i

eR , where 

2/
0

δ

α
β

ρ iek −= , and δ is the angle describing the losses. This formula shows that the reflection 

coefficient is  mainly determined by the complex permittivity on the boundary. In particular, for a 

medium with a low permittivity (sweet water) we derive: 
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extreme in which α is large we get: ( ) ( )[ ]0
2/

0000 /2/21 πρβρρ δieiNNR ++−≈ . Some 
dependencies of the reflection coefficient upon α with different values of β and δ are shown in Fig.4. 
 
6.  Conclusion 
In this paper we show that 1-D models characterizing the 2-medium problem may give interesting 
insights in the e.m. properties of the soil. The models are based on 1-D permittivity profiles with 
depth. Vertical probing results have been shown using expressions for the power reflection coefficient. 
Probing under certain scan angles allow a polarimatric radar approach and may give even more 
information on the underlying medium. 
 
Acknowledgements 
The funding of this work has been acquired via the Budget International Facilities given to IRCTR by 
the Netherlands Ministry of Education, Culture and Science and by support from The Netherlands 
National Science Foundation and from STW (Stichting voor de Technische Wetenschappen – National 
Technology Foundation) in particular. 
        

                                 
 

 Fig.1. Coordinate System          Fig.2.  Dependence 
2R upon α  cm-1 for a linear layer. λ=3cm.   

      ( ) ( ) ( ) ( ) zizzizziz αεαεαε ++=+=+= 125,02.3;1.2;2.1  

 
 

                                   
 
Fig.3.Dependence ( )zε  upon the thickness h   Fig.4.Dependence 

2R  upon α  cm-1 for an  
of an intermediate layer. In the intermediate   exponential profile. 
layer ( )zε  changes from 1=ε  up to i4065 −=ε    1. e(z) = exp(1+i0,1az); 2. e(z) = (1+i) exp(az); 
according to a linear (1), harmonic (2) and          3. e(z) = (3,5+2i) exp(az) 
exponential (3) profile. λ=3cm. 
 


