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Abstract - This paper presents a fast solution of 
electromagnetic scattering from perfect electric conductors by 
using a sparfied adaptive cross approximation-multilevel fast 
adaptive cross approximation (SPACA-MLFACA) algorithm. 
In the new method, the conventional SPACA and MLFACA is 
used to deal with the interactions between well-separated 
blocks with relative small and large size, respectively. As a 
result, the new method can save more memory and iterative 
time than the conventional SPACA and MLFACA for 
electrically large targets. 

Index Terms — Computational electromagnetics (CEM), 
method of moments (MoM), adaptive cross approximation 
(ACA), sparsified adaptive cross approximation (SPACA), 
multilevel fast adaptive cross approximation (MLFACA). 

1. Introduction 

In the past decades, many methods have been proposed 
to speed up the method of moments (MoM) [1], which is 
very popular for solving electrometric scattering and 
radiation problems. In these methods, the adaptive cross 
approximation (ACA)-based approaches have attracted 
considerable attention, such as the ACA [2][3], ACA-
singular value decomposition (ACA-SVD) [4][5], 
multilevel ACA (MLACA) [6], sparsified ACA (SPACA) 
[7][8], sparsified MLACA [9], fast ACA (FACA) [10] and 
multilevel fast ACA (MLFACA) [10]. In these ACA-based 
methods, the MLACA has the smallest computation and 
storage complexities. The CPU time and memory used in 
the MLFACA scale O(Nlog2N), where N is the number of 
unknowns. 

 In this paper, a new method is proposed to improve the 
conventional MLFACA. In the new method, we combine 
the SPACA and MLFACA together. The SPACA is 
employed to compress the interactions between relative 
small blocks in the tree structure. Thus, the compression 
ratio can be improved, because the SPACA can achieve a 
complexity close to O(NlogN) [7][8] for relative small 
blocks. 

2. Formulations 

(1) Conventional MLFACA 
To use the MLFACA, the target needs to be divided into 

blocks using the octal tree. This step is same as the classic 

multilevel fast multipole algorithm (MLFMA) [10]. The 
MLFACA is used to compress the interactions related to 
far-block pairs.  

The MLFACA is a multilevel version of the FACA [8], 
and the multilevel scheme used in the MFLACA is 
borrowed from the multilevel matrix decomposition 
algorithm (MLMDA) [12]. However, compared with 
MLMDA, the MLFACA does not need to construct 
equivalent sources with the same complexity.  

Taking the L-level MLFACA as an example, the 
impedance submatrix related to the ith and jth block is 
compressed as 
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where ( )pC , ( )pD , and ( )LR  are sparse block matrices. And 
more details of these sparse matrices can be find in [10]. 

For both CPU time and storage, the MLFACA can 
achieve the asymptotic complexity O(Nlog2N) for large 
target and the asymptotic complexity O(MlogM) for large 
block, where N and M is the number of unknowns in a 
target and a block. However, the MLFACA is not the best 
choice for relative small targets and relative small blocks.  

(2) SPACA-MLFACA 
To improve the conventional MLFACA, the SPACA is 

used to compress the interactions between relative small 
blocks in the MLFACA.  

For relative small targets and blocks, the SPACA can 
achieve a complexity close to O(NlogN) and O(M), 
respectively. It compress a submatrix as a product of five 
matrices as 

 
 ,

ˆ ˆ T T
i j i i R j j≈Z A Q S Q A  (2) 

 
where iA  and T

jA are block diagonal matrices.  RS  is a 
diagonal matrix. Details of obtaining the five matrices can 
be find in [8]. 

With the help of the SPACA, the SPACA-MLFACA can 
save more memory and iterative time than the conventional 
MLFACA. 
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3. Numerical Example 

In this section, the proposed SPACA-MLFACA is 
implemented and applied to solve the electromagnetic 
scattering from a PEC sphere with radius of 10 m. The 
work frequency is 300 MHz. The combined field integral 
equation (CFIE) with GMRES is used. 450522 RWG [13] 
with the average side length is obtained. The octal tree has 
6 levels.  

The comparison of the performance of the MLFACA and 
the SPACA-MLFACA is shown in Table 1. Fig. 1 gives the 
bistatic RCS of the target calculated by the SPACA-
MLFACA. It can be seen that a good agreement between 
the SPACA-MLFACA solution and the Mie solution. 

TABLE I 
Comparison of storage and CPU time for different methods 

method memory of  
far-block pairs iterative time 

MLFACA 12.1 GB      140 s 
SPACA-MLFACA 8.0 GB 113 s 
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Fig. 1. Bistatic RCS of PEC sphere with radio of 10 m at 

300 MHz. 
 

4. Conclusion 

This paper proposes a fast iterative solver termed as 
SPACA-MLFACA for the MoM. In the new method, the  
MLFACA is replaced with the SPACA to compress the 
interactions between relative small blocks. Numerical 

results show that the proposed method can save memory 
and CPU time than the conventional MLFACA. 
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